Schiffrin Agustin, Riemann Andreas, Auwärter Willi, Pennec Yan, Weber-Bargioni Alex, Cvetko Dean, Cossaro Albano, Morgante Alberto, Barth Johannes V
Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5279-84. doi: 10.1073/pnas.0607867104. Epub 2007 Mar 19.
The engineering of complex architectures from functional molecules on surfaces provides new pathways to control matter at the nanoscale. In this article, we present a combined study addressing the self-assembly of the amino acid L-methionine on Ag(111). Scanning tunneling microscopy data reveal spontaneous ordering in extended molecular chains oriented along high-symmetry substrate directions. At intermediate coverages, regular biomolecular gratings evolve whose periodicity can be tuned at the nanometer scale by varying the methionine surface concentration. Their characteristics and stability were confirmed by helium atomic scattering. X-ray photoemission spectroscopy and high-resolution scanning tunneling microscopy data reveal that the L-methionine chaining is mediated by zwitterionic coupling, accounting for both lateral links and molecular dimerization. This methionine molecular recognition scheme is reminiscent of sheet structures in amino acid crystals and was corroborated by molecular mechanics calculations. Our findings suggest that zwitterionic assembly of amino acids represents a general construction motif to achieve biomolecular nanoarchitectures on surfaces.
从表面功能分子构建复杂结构为在纳米尺度上控制物质提供了新途径。在本文中,我们展示了一项关于氨基酸L-蛋氨酸在Ag(111)上自组装的综合研究。扫描隧道显微镜数据揭示了沿高对称衬底方向取向的延伸分子链中的自发有序排列。在中等覆盖度下,会形成规则的生物分子光栅,其周期性可通过改变蛋氨酸表面浓度在纳米尺度上进行调节。氦原子散射证实了它们的特性和稳定性。X射线光电子能谱和高分辨率扫描隧道显微镜数据表明,L-蛋氨酸链是由两性离子耦合介导的,这解释了横向连接和分子二聚化现象。这种蛋氨酸分子识别模式让人联想到氨基酸晶体中的片状结构,并通过分子力学计算得到了证实。我们的研究结果表明,氨基酸的两性离子组装代表了一种在表面实现生物分子纳米结构的通用构建模式。