Hickenboth Charles R, Moore Jeffrey S, White Scott R, Sottos Nancy R, Baudry Jerome, Wilson Scott R
School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Nature. 2007 Mar 22;446(7134):423-7. doi: 10.1038/nature05681.
During the course of chemical reactions, reactant molecules need to surmount an energy barrier to allow their transformation into products. The energy needed for this process is usually provided by heat, light, pressure or electrical potential, which act either by changing the distribution of the reactants on their ground-state potential energy surface or by moving them onto an excited-state potential energy surface and thereby facilitate movement over the energy barrier. A fundamentally different way of initiating or accelerating a reaction is the use of force to deform reacting molecules along a specific direction of the reaction coordinate. Mechanical force has indeed been shown to activate covalent bonds in polymers, but the usual result is chain scission. Here we show that mechanically sensitive chemical groups make it possible to harness the mechanical forces generated when exposing polymer solutions to ultrasound, and that this allows us to accelerate rearrangement reactions and bias reaction pathways to yield products not obtainable from purely thermal or light-induced reactions. We find that when placed within long polymer strands, the trans and cis isomers of a 1,2-disubstituted benzocyclobutene undergo an ultrasound-induced electrocyclic ring opening in a formally conrotatory and formally disrotatory process, respectively, that yield identical products. This contrasts with reaction initiation by light or heat alone, in which case the isomers follow mutually exclusive pathways to different products. Mechanical forces associated with ultrasound can thus clearly alter the shape of potential energy surfaces so that otherwise forbidden or slow processes proceed under mild conditions, with the directionally specific nature of mechanical forces providing a reaction control that is fundamentally different from that achieved by adjusting chemical or physical parameters. Because rearrangement in our system occurs before chain scission, the effect we describe might allow the development of materials that are activated by mechanical stress fields.
在化学反应过程中,反应物分子需要克服一个能量屏障才能转化为产物。这个过程所需的能量通常由热、光、压力或电势提供,它们通过改变反应物在其基态势能面上的分布,或者将它们转移到激发态势能面上,从而促进越过能量屏障的移动。一种从根本上不同的引发或加速反应的方式是使用力沿着反应坐标的特定方向使反应分子变形。机械力确实已被证明能激活聚合物中的共价键,但通常的结果是链断裂。在这里,我们表明机械敏感化学基团使得利用将聚合物溶液暴露于超声时产生的机械力成为可能,并且这使我们能够加速重排反应并使反应路径偏向以产生从纯粹的热诱导或光诱导反应中无法获得的产物。我们发现,当1,2 - 二取代苯并环丁烯的反式和顺式异构体置于长聚合物链中时,它们分别经历超声诱导的电环化开环反应,反应过程分别为形式上的顺旋和形式上的对旋,生成相同的产物。这与仅由光或热引发反应的情况形成对比,在那种情况下,异构体遵循相互排斥的路径生成不同的产物。因此,与超声相关的机械力能够明显改变势能面的形状,使得原本被禁止或缓慢的过程在温和条件下进行,机械力的方向特异性提供了一种与通过调节化学或物理参数实现的反应控制根本不同的反应控制方式。由于我们系统中的重排在链断裂之前发生,我们所描述的这种效应可能会推动由机械应力场激活的材料的开发。