Germann Anne, Meisner Jan
Institute of Physical Chemistry, Heinrich Heine University Düsseldorf 40225 Germany
Chem Sci. 2025 Aug 16. doi: 10.1039/d5sc04954g.
Besides long established thermal and photochemical activation of chemical reactivity, mechanical forces emerged as a further tool to drive reactions. Molecular motifs which undergo particular transformations under external force, so called mechanophores, are oftentimes small cyclic structures which can easily be activated due to their inherent ring strain. In the ring-opening of -substituted 4 π-electron mechanophores, the pulling force activates the Woodward-Hoffmann-forbidden disrotatory reaction, which can compete with the allowed conrotatory reaction. We introduce the concept of transition state rupture, a force-induced catastrophe which results in changing the preferred reaction pathway on the force-modified potential energy surface, controlling selectivity. By computing force-modified stationary points and reaction pathways for various linker-mechanophore combinations we rigorously investigate how the magnitude of the external force determines the mechanochemical mechanism. Using the concept of transition state rupture, we explain previous observations made in sonication experiments studying the activation of aziridine mechanophores, elucidating the reaction mechanisms and product selectivity.
除了长期以来用于激活化学反应性的热激活和光化学激活方法外,机械力也成为驱动反应的另一种工具。在外力作用下会发生特定转化的分子基序,即所谓的机械活性基团,通常是小的环状结构,由于其固有的环张力,它们很容易被激活。在 - 取代的4π电子机械活性基团的开环反应中,拉力会激活伍德沃德 - 霍夫曼禁阻的顺旋反应,该反应可以与允许的对旋反应竞争。我们引入了过渡态破裂的概念,这是一种力诱导的突变,它会导致在力修饰的势能面上改变优选的反应途径,从而控制选择性。通过计算各种连接体 - 机械活性基团组合的力修饰驻点和反应途径,我们严格研究了外力大小如何决定机械化学机制。利用过渡态破裂的概念,我们解释了之前在研究氮杂环丙烷机械活性基团激活的超声实验中所观察到的现象,阐明了反应机制和产物选择性。