Suppr超能文献

小鼠下颌下腺中钙激活钾通道对膜电位和液体分泌的调节

Regulation of membrane potential and fluid secretion by Ca2+-activated K+ channels in mouse submandibular glands.

作者信息

Romanenko Victor G, Nakamoto Tetsuji, Srivastava Alaka, Begenisich Ted, Melvin James E

机构信息

Center for Oral Biology in the Aab Institute of Biomedical Sciences and Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.

出版信息

J Physiol. 2007 Jun 1;581(Pt 2):801-17. doi: 10.1113/jphysiol.2006.127498. Epub 2007 Mar 22.

Abstract

We have recently shown that the IK1 and maxi-K channels in parotid salivary gland acinar cells are encoded by the K(Ca)3.1 and K(Ca)1.1 genes, respectively, and in vivo stimulated parotid secretion is severely reduced in double-null mice. The current study tested whether submandibular acinar cell function also relies on these channels. We found that the K(+) currents in submandibular acinar cells have the biophysical and pharmacological footprints of IK1 and maxi-K channels and their molecular identities were confirmed by the loss of these currents in K(Ca)3.1- and K(Ca)1.1-null mice. Unexpectedly, the pilocarpine-stimulated in vivo fluid secretion from submandibular glands was essentially normal in double-null mice. This result and the possibility of side-effects of pilocarpine on the nervous system, led us to develop an ex vivo fluid secretion assay. Fluid secretion from the ex vivo assay was substantially (about 75%) reduced in animals with both K(+) channel genes ablated - strongly suggesting systemic complications with the in vivo assay. Additional experiments focusing on the membrane potential in isolated submandibular acinar cells revealed mechanistic details underlying fluid secretion in K(+) channel-deficient mice. The membrane potential of submandibular acinar cells from wild-type mice remained strongly hyperpolarized (-55 +/- 2 mV) relative to the Cl(-) equilibrium potential (-24 mV) during muscarinic stimulation. Similar hyperpolarizations were observed in K(Ca)3.1- and K(Ca)1.1-null mice (-51 +/- 3 and -48 +/- 3 mV, respectively), consistent with the normal fluid secretion produced ex vivo. In contrast, acinar cells from double K(Ca)3.1/K(Ca)1.1-null mice were only slightly hyperpolarized (-35 +/- 2 mV) also consistent with the ex vivo (but not in vivo) results. Finally, we found that the modest hyperpolarization of cells from the double-null mice was maintained by the electrogenic Na(+),K(+)-ATPase.

摘要

我们最近发现,腮腺腺泡细胞中的IK1和大电导钙激活钾通道分别由K(Ca)3.1和K(Ca)1.1基因编码,在双基因敲除小鼠中,体内刺激的腮腺分泌严重减少。当前的研究测试了下颌下腺泡细胞功能是否也依赖于这些通道。我们发现,下颌下腺泡细胞中的钾电流具有IK1和大电导钙激活钾通道的生物物理和药理学特征,并且在K(Ca)3.1和K(Ca)1.1基因敲除小鼠中这些电流的消失证实了它们的分子身份。出乎意料的是,毛果芸香碱刺激的下颌下腺体内液体分泌在双基因敲除小鼠中基本正常。这一结果以及毛果芸香碱对神经系统产生副作用的可能性,促使我们开发一种离体液体分泌检测方法。在两种钾通道基因均被敲除的动物中,离体检测的液体分泌大幅减少(约75%),这强烈表明体内检测存在系统性并发症。聚焦于分离的下颌下腺泡细胞膜电位的额外实验揭示了钾通道缺陷小鼠中液体分泌的潜在机制细节。在毒蕈碱刺激期间,野生型小鼠下颌下腺泡细胞的膜电位相对于氯离子平衡电位(-24 mV)仍保持强烈超极化(-55±2 mV)。在K(Ca)3.1和K(Ca)1.1基因敲除小鼠中也观察到类似的超极化(分别为-51±3 mV和-48±3 mV),这与离体产生的正常液体分泌一致。相比之下,双基因敲除小鼠(K(Ca)3.1/K(Ca)1.1)的腺泡细胞仅轻微超极化(-35±2 mV),这也与离体(而非体内)结果一致。最后,我们发现双基因敲除小鼠细胞的适度超极化是由电生性钠钾ATP酶维持 的。

相似文献

1
Regulation of membrane potential and fluid secretion by Ca2+-activated K+ channels in mouse submandibular glands.
J Physiol. 2007 Jun 1;581(Pt 2):801-17. doi: 10.1113/jphysiol.2006.127498. Epub 2007 Mar 22.
2
Apical maxi-K (KCa1.1) channels mediate K+ secretion by the mouse submandibular exocrine gland.
Am J Physiol Cell Physiol. 2008 Mar;294(3):C810-9. doi: 10.1152/ajpcell.00511.2007. Epub 2008 Jan 23.
3
Molecular identification and physiological roles of parotid acinar cell maxi-K channels.
J Biol Chem. 2006 Sep 22;281(38):27964-72. doi: 10.1074/jbc.M603871200. Epub 2006 Jul 27.
5
Ca2+-activated K channels in parotid acinar cells: The functional basis for the hyperpolarized activation of BK channels.
Channels (Austin). 2010 Jul-Aug;4(4):278-88. doi: 10.4161/chan.4.4.12197. Epub 2010 Jul 28.
7
Suppression of carbachol-induced oscillatory Cl- secretion by forskolin in rat parotid and submandibular acinar cells.
Am J Physiol Gastrointest Liver Physiol. 2008 Mar;294(3):G738-47. doi: 10.1152/ajpgi.00239.2007. Epub 2008 Jan 10.
8
Tmem16A encodes the Ca2+-activated Cl- channel in mouse submandibular salivary gland acinar cells.
J Biol Chem. 2010 Apr 23;285(17):12990-3001. doi: 10.1074/jbc.M109.068544. Epub 2010 Feb 22.
9
Molecular identification of Ca2+-activated K+ channels in parotid acinar cells.
Am J Physiol Cell Physiol. 2003 Feb;284(2):C535-46. doi: 10.1152/ajpcell.00044.2002. Epub 2002 Oct 16.
10
Effects of pilocarpine on the secretory acinar cells in human submandibular glands.
Life Sci. 2006 Nov 25;79(26):2441-7. doi: 10.1016/j.lfs.2006.08.006. Epub 2006 Aug 17.

引用本文的文献

1
The zinc receptor, ZnR/GPR39, modulates taste sensitivity by regulating ion secretion in mouse salivary gland.
iScience. 2025 Jan 28;28(2):111912. doi: 10.1016/j.isci.2025.111912. eCollection 2025 Feb 21.
2
Structural and functional analysis of salivary intercalated duct cells reveals a secretory phenotype.
J Physiol. 2023 Oct;601(20):4539-4556. doi: 10.1113/JP285104. Epub 2023 Sep 19.
3
Major depression-related factor NEGR1 controls salivary secretion in mouse submandibular glands.
iScience. 2023 Apr 26;26(5):106773. doi: 10.1016/j.isci.2023.106773. eCollection 2023 May 19.
4
Ca Imaging in Mouse Salivary Glands.
Bio Protoc. 2022 Apr 5;12(7):e4380. doi: 10.21769/BioProtoc.4380.
6
7
Loss of the disease-associated glycosyltransferase Galnt3 alters Muc10 glycosylation and the composition of the oral microbiome.
J Biol Chem. 2020 Jan 31;295(5):1411-1425. doi: 10.1074/jbc.RA119.009807. Epub 2019 Dec 27.
8
Ca Signaling in Exocrine Cells.
Cold Spring Harb Perspect Biol. 2020 May 1;12(5):a035279. doi: 10.1101/cshperspect.a035279.
9
Loss of Fam20c causes defects in the acinar and duct structure of salivary glands in mice.
Int J Mol Med. 2019 May;43(5):2103-2117. doi: 10.3892/ijmm.2019.4126. Epub 2019 Mar 6.
10
Physiological cAMP-elevating secretagogues differentially regulate fluid and protein secretions in mouse submandibular and sublingual glands.
Am J Physiol Cell Physiol. 2019 May 1;316(5):C690-C697. doi: 10.1152/ajpcell.00421.2018. Epub 2019 Mar 6.

本文引用的文献

1
High-conductance potassium channels of the SLO family.
Nat Rev Neurosci. 2006 Dec;7(12):921-31. doi: 10.1038/nrn1992.
2
Molecular identification and physiological roles of parotid acinar cell maxi-K channels.
J Biol Chem. 2006 Sep 22;281(38):27964-72. doi: 10.1074/jbc.M603871200. Epub 2006 Jul 27.
3
Membrane-delimited inhibition of maxi-K channel activity by the intermediate conductance Ca2+-activated K channel.
J Gen Physiol. 2006 Feb;127(2):159-69. doi: 10.1085/jgp.200509457. Epub 2006 Jan 17.
4
Regulation of fluid and electrolyte secretion in salivary gland acinar cells.
Annu Rev Physiol. 2005;67:445-69. doi: 10.1146/annurev.physiol.67.041703.084745.
5
Muscarinic activation of Na+-dependent ion transporters and modulation by bicarbonate in rat submandibular gland acinus.
Am J Physiol Gastrointest Liver Physiol. 2005 Apr;288(4):G822-31. doi: 10.1152/ajpgi.00406.2004. Epub 2004 Nov 11.
6
Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4.
J Biol Chem. 2004 Nov 12;279(46):47681-7. doi: 10.1074/jbc.M409627200. Epub 2004 Sep 3.
7
Local and global calcium signals and fluid and electrolyte secretion in mouse submandibular acinar cells.
Am J Physiol Gastrointest Liver Physiol. 2005 Jan;288(1):G118-24. doi: 10.1152/ajpgi.00096.2004. Epub 2004 Aug 12.
8
Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel.
J Biol Chem. 2004 Aug 27;279(35):36746-52. doi: 10.1074/jbc.M405621200. Epub 2004 Jun 7.
9
Central muscarinic receptors signal pilocarpine-induced salivation.
J Dent Res. 2003 Dec;82(12):993-7. doi: 10.1177/154405910308201211.
10
ATP-dependent regulation of SK4/IK1-like currents in rat submandibular acinar cells: possible role of cAMP-dependent protein kinase.
Am J Physiol Cell Physiol. 2004 Mar;286(3):C635-46. doi: 10.1152/ajpcell.00283.2003. Epub 2003 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验