Suppr超能文献

利用粗粒度分子动力学探索HIV-1蛋白酶底物结合和产物释放途径。

HIV-1 protease substrate binding and product release pathways explored with coarse-grained molecular dynamics.

作者信息

Trylska Joanna, Tozzini Valentina, Chang Chia-en A, McCammon J Andrew

机构信息

Interdisciplinary Centre for Mathematical and Computational Modeling, University of Warsaw, Warsaw, Poland.

出版信息

Biophys J. 2007 Jun 15;92(12):4179-87. doi: 10.1529/biophysj.106.100560. Epub 2007 Mar 23.

Abstract

We analyze the encounter of a peptide substrate with the native HIV-1 protease, the mechanism of substrate incorporation in the binding cleft, and the dissociation of products after substrate hydrolysis. To account for the substrate, we extend a coarse-grained model force field, which we previously developed to study the flap opening dynamics of HIV-1 protease on a microsecond timescale. Molecular and Langevin dynamics simulations show that the flaps need to open for the peptide to bind and that the protease interaction with the substrate influences the flap opening frequency and interval. On the other hand, release of the products does not require flap opening because they can slide out from the binding cleft to the sides of the enzyme. Our data show that in the protease-substrate complex the highest fluctuations correspond to the 17- and 39-turns and the substrate motion is anticorrelated with the 39-turn. Moreover, the active site residues and the flap tips move in phase with the peptide. We suggest some mechanistic principles for how the flexibility of the protein may be involved in ligand binding and release.

摘要

我们分析了肽底物与天然HIV-1蛋白酶的相遇、底物纳入结合裂隙的机制以及底物水解后产物的解离。为了考虑底物,我们扩展了一个粗粒度模型力场,该力场是我们之前为研究HIV-1蛋白酶在微秒时间尺度上的瓣片打开动力学而开发的。分子动力学和朗之万动力学模拟表明,肽结合需要瓣片打开,并且蛋白酶与底物的相互作用会影响瓣片打开频率和间隔。另一方面,产物的释放不需要瓣片打开,因为它们可以从结合裂隙滑向酶的侧面。我们的数据表明,在蛋白酶-底物复合物中,最大波动对应于17和39转角,并且底物运动与39转角呈反相关。此外,活性位点残基和瓣片尖端与肽同步移动。我们提出了一些关于蛋白质灵活性如何参与配体结合和释放的机制原理。

相似文献

1
HIV-1 protease substrate binding and product release pathways explored with coarse-grained molecular dynamics.
Biophys J. 2007 Jun 15;92(12):4179-87. doi: 10.1529/biophysj.106.100560. Epub 2007 Mar 23.
2
Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations.
Chem Biol Drug Des. 2007 Jan;69(1):5-13. doi: 10.1111/j.1747-0285.2007.00464.x.
3
Flap opening mechanism of HIV-1 protease.
J Mol Graph Model. 2006 May;24(6):465-74. doi: 10.1016/j.jmgm.2005.08.008. Epub 2005 Sep 26.
4
Flap opening dynamics in HIV-1 protease explored with a coarse-grained model.
J Struct Biol. 2007 Mar;157(3):606-15. doi: 10.1016/j.jsb.2006.08.005. Epub 2006 Aug 23.
5
Binding kinetics and substrate selectivity in HIV-1 protease-Gag interactions probed at atomic resolution by chemical exchange NMR.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9855-E9862. doi: 10.1073/pnas.1716098114. Epub 2017 Oct 30.
6
Dynamic flaps in HIV-1 protease adopt unique ordering at different stages in the catalytic cycle.
Proteins. 2011 Jun;79(6):1830-40. doi: 10.1002/prot.23008. Epub 2011 Apr 4.
7
Curling of flap tips in HIV-1 protease as a mechanism for substrate entry and tolerance of drug resistance.
Structure. 2000 Dec 15;8(12):1259-65. doi: 10.1016/s0969-2126(00)00537-2.
8
Comparative molecular dynamics study of dimeric and monomeric forms of HIV-1 protease in ligand bound and unbound state.
Gen Physiol Biophys. 2017 Apr;36(2):141-154. doi: 10.4149/gpb_2016028. Epub 2016 Dec 6.
9
Atomistic simulations of the HIV-1 protease folding inhibition.
Biophys J. 2008 Jul;95(2):550-62. doi: 10.1529/biophysj.107.127621. Epub 2008 Mar 28.

引用本文的文献

1
Integrative modeling of diverse protein-peptide systems using CABS-dock.
PLoS Comput Biol. 2023 Jul 5;19(7):e1011275. doi: 10.1371/journal.pcbi.1011275. eCollection 2023 Jul.
2
Cellular Targets of HIV-1 Protease: Just the Tip of the Iceberg?
Viruses. 2023 Mar 9;15(3):712. doi: 10.3390/v15030712.
4
Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison.
Life (Basel). 2022 Jan 13;12(1):116. doi: 10.3390/life12010116.
5
Techniques assisting peptide vaccine and peptidomimetic design. Sidechain exposure in the SARS-CoV-2 spike glycoprotein.
Comput Biol Med. 2021 Jan;128:104124. doi: 10.1016/j.compbiomed.2020.104124. Epub 2020 Nov 21.
6
Enzymatic activity of human immunodeficiency virus type 1 protease in crowded solutions.
Eur Biophys J. 2019 Oct;48(7):685-689. doi: 10.1007/s00249-019-01392-1. Epub 2019 Aug 28.
9
Distributions of experimental protein structures on coarse-grained free energy landscapes.
J Chem Phys. 2015 Dec 28;143(24):243153. doi: 10.1063/1.4937940.
10
Conformational variation of an extreme drug resistant mutant of HIV protease.
J Mol Graph Model. 2015 Nov;62:87-96. doi: 10.1016/j.jmgm.2015.09.006. Epub 2015 Sep 8.

本文引用的文献

1
Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations.
Chem Biol Drug Des. 2007 Jan;69(1):5-13. doi: 10.1111/j.1747-0285.2007.00464.x.
2
3
Flap opening dynamics in HIV-1 protease explored with a coarse-grained model.
J Struct Biol. 2007 Mar;157(3):606-15. doi: 10.1016/j.jsb.2006.08.005. Epub 2006 Aug 23.
5
Gated binding of ligands to HIV-1 protease: Brownian dynamics simulations in a coarse-grained model.
Biophys J. 2006 Jun 1;90(11):3880-5. doi: 10.1529/biophysj.105.074575. Epub 2006 Mar 13.
8
HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations.
Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):915-20. doi: 10.1073/pnas.0508452103. Epub 2006 Jan 17.
9
"Wide-open" 1.3 A structure of a multidrug-resistant HIV-1 protease as a drug target.
Structure. 2005 Dec;13(12):1887-95. doi: 10.1016/j.str.2005.11.005.
10
Fast peptidyl cis-trans isomerization within the flexible Gly-rich flaps of HIV-1 protease.
J Am Chem Soc. 2005 Oct 12;127(40):13778-9. doi: 10.1021/ja054338a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验