Li Xianbin, Caffo Brian, Scharfstein Daniel
Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA.
Biostatistics. 2007 Oct;8(4):800-4. doi: 10.1093/biostatistics/kxm006. Epub 2007 Mar 23.
Logically defined outcomes are commonly used in medical diagnoses and epidemiological research. When missing values in the original outcomes exist, the method of handling the missingness can have unintended consequences, even if the original outcomes are missing completely at random. In this note, we consider 2 binary original outcomes, which are missing completely at random. For estimating the prevalence of a logically defined "or" outcome, we discuss the properties of 4 estimators: the complete-case estimator, the available-case estimator, the maximum likelihood estimator (MLE), and a moment-based estimator. With the exception of the available-case case estimator, all the estimators are consistent. The MLE exhibits superior performance and should be generally adopted.
逻辑定义的结果在医学诊断和流行病学研究中普遍使用。当原始结果中存在缺失值时,即使原始结果是完全随机缺失的,处理缺失值的方法也可能产生意想不到的后果。在本笔记中,我们考虑2个完全随机缺失的二元原始结果。为了估计逻辑定义的“或”结果的患病率,我们讨论了4种估计器的性质:完全病例估计器、可用病例估计器、最大似然估计器(MLE)和基于矩的估计器。除可用病例估计器外,所有估计器都是一致的。MLE表现出卓越的性能,应普遍采用。