Suppr超能文献

协作双稳健靶向最大似然估计

Collaborative double robust targeted maximum likelihood estimation.

作者信息

van der Laan Mark J, Gruber Susan

机构信息

University of California, Berkeley, CA, USA.

出版信息

Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.

Abstract

Collaborative double robust targeted maximum likelihood estimators represent a fundamental further advance over standard targeted maximum likelihood estimators of a pathwise differentiable parameter of a data generating distribution in a semiparametric model, introduced in van der Laan, Rubin (2006). The targeted maximum likelihood approach involves fluctuating an initial estimate of a relevant factor (Q) of the density of the observed data, in order to make a bias/variance tradeoff targeted towards the parameter of interest. The fluctuation involves estimation of a nuisance parameter portion of the likelihood, g. TMLE has been shown to be consistent and asymptotically normally distributed (CAN) under regularity conditions, when either one of these two factors of the likelihood of the data is correctly specified, and it is semiparametric efficient if both are correctly specified. In this article we provide a template for applying collaborative targeted maximum likelihood estimation (C-TMLE) to the estimation of pathwise differentiable parameters in semi-parametric models. The procedure creates a sequence of candidate targeted maximum likelihood estimators based on an initial estimate for Q coupled with a succession of increasingly non-parametric estimates for g. In a departure from current state of the art nuisance parameter estimation, C-TMLE estimates of g are constructed based on a loss function for the targeted maximum likelihood estimator of the relevant factor Q that uses the nuisance parameter to carry out the fluctuation, instead of a loss function for the nuisance parameter itself. Likelihood-based cross-validation is used to select the best estimator among all candidate TMLE estimators of Q(0) in this sequence. A penalized-likelihood loss function for Q is suggested when the parameter of interest is borderline-identifiable. We present theoretical results for "collaborative double robustness," demonstrating that the collaborative targeted maximum likelihood estimator is CAN even when Q and g are both mis-specified, providing that g solves a specified score equation implied by the difference between the Q and the true Q(0). This marks an improvement over the current definition of double robustness in the estimating equation literature. We also establish an asymptotic linearity theorem for the C-DR-TMLE of the target parameter, showing that the C-DR-TMLE is more adaptive to the truth, and, as a consequence, can even be super efficient if the first stage density estimator does an excellent job itself with respect to the target parameter. This research provides a template for targeted efficient and robust loss-based learning of a particular target feature of the probability distribution of the data within large (infinite dimensional) semi-parametric models, while still providing statistical inference in terms of confidence intervals and p-values. This research also breaks with a taboo (e.g., in the propensity score literature in the field of causal inference) on using the relevant part of likelihood to fine-tune the fitting of the nuisance parameter/censoring mechanism/treatment mechanism.

摘要

协作双稳健目标最大似然估计器是对范德兰特和鲁宾(2006年)引入的半参数模型中数据生成分布的路径可微参数的标准目标最大似然估计器的进一步根本性推进。目标最大似然方法涉及对观测数据密度的相关因子(Q)的初始估计进行波动,以便针对感兴趣的参数进行偏差/方差权衡。这种波动涉及对似然中干扰参数部分g的估计。在正则条件下,当数据似然的这两个因子中的任何一个被正确指定时,TMLE已被证明是一致的且渐近正态分布(CAN),如果两者都被正确指定,则它是半参数有效的。在本文中,我们提供了一个将协作目标最大似然估计(C-TMLE)应用于半参数模型中路径可微参数估计的模板。该过程基于对Q的初始估计以及对g的一系列越来越非参数化的估计,创建一系列候选目标最大似然估计器。与当前最先进的干扰参数估计不同,C-TMLE对g的估计是基于使用干扰参数进行波动的相关因子Q的目标最大似然估计器的损失函数构建的,而不是基于干扰参数本身的损失函数。基于似然的交叉验证用于在该序列中所有Q(0)的候选TMLE估计器中选择最佳估计器。当感兴趣的参数是边界可识别时,建议使用针对Q的惩罚似然损失函数。我们给出了“协作双稳健性”的理论结果,证明即使Q和g都被错误指定,协作目标最大似然估计器也是CAN,前提是g解决了由Q与真实Q(0)之间的差异所隐含的指定得分方程。这标志着在估计方程文献中对双稳健性当前定义的改进。我们还为目标参数的C-DR-TMLE建立了一个渐近线性定理,表明C-DR-TMLE对真相更具适应性,因此,如果第一阶段密度估计器本身在目标参数方面表现出色,它甚至可以是超有效的。这项研究为在大型(无限维)半参数模型中基于目标高效且稳健的基于损失的学习数据概率分布的特定目标特征提供了一个模板,同时仍能根据置信区间和p值提供统计推断。这项研究还打破了在使用似然的相关部分来微调干扰参数/删失机制/处理机制的拟合方面的一个禁忌(例如,在因果推断领域的倾向得分文献中)。

相似文献

1
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
10
Marginal Structural Models with Counterfactual Effect Modifiers.具有反事实效应修饰因子的边际结构模型。
Int J Biostat. 2018 Jun 8;14(1):/j/ijb.2018.14.issue-1/ijb-2018-0039/ijb-2018-0039.xml. doi: 10.1515/ijb-2018-0039.

引用本文的文献

1
Improving efficiency in transporting average treatment effects.提高平均治疗效果的运输效率。
Biometrika. 2025;112(3). doi: 10.1093/biomet/asaf027. Epub 2025 Apr 8.

本文引用的文献

1
Outcome trajectory estimation for optimal dynamic treatment regimes with repeated measures.具有重复测量的最优动态治疗方案的结果轨迹估计
J R Stat Soc Ser C Appl Stat. 2023 May 22;72(4):976-991. doi: 10.1093/jrsssc/qlad037. eCollection 2023 Aug.
6
Marginal Mean Models for Dynamic Regimes.动态状态的边际均值模型。
J Am Stat Assoc. 2001 Dec 1;96(456):1410-1423. doi: 10.1198/016214501753382327.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验