Suppr超能文献

通过控制粘附因子的表达对大肠杆菌生物膜形成进行严格调控。

Tight modulation of Escherichia coli bacterial biofilm formation through controlled expression of adhesion factors.

作者信息

Da Re Sandra, Le Quéré Benjamin, Ghigo Jean-Marc, Beloin Christophe

机构信息

Groupe de Génétique des Biofilms, CNRS URA 2172, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.

出版信息

Appl Environ Microbiol. 2007 May;73(10):3391-403. doi: 10.1128/AEM.02625-06. Epub 2007 Mar 23.

Abstract

Despite the economic and sanitary problems caused by harmful biofilms, biofilms are nonetheless used empirically in industrial environmental and bioremediation processes and may be of potential use in medical settings for interfering with pathogen development. Escherichia coli is one of the bacteria with which biofilm formation has been studied in great detail, and it is especially appreciated for biotechnology applications because of its genetic amenability. Here we describe the development of two new genetic tools enabling the constitutive and inducible expression of any gene or operon of interest at its native locus. In addition to providing valuable tools for complementation and overexpression experiments, these two compact genetic cassettes were used to modulate the biofilm formation capacities of E. coli by taking control of two biofilm-promoting factors, autotransported antigen 43 adhesin and the bscABZC cellulose operon. The modulation of the biofilm formation capacities of E. coli or those of other bacteria capable of being genetically manipulated may be of use both for reducing and for improving the impact of biofilms in a number of industrial and medical applications.

摘要

尽管有害生物膜会引发经济和卫生问题,但在工业环境和生物修复过程中,生物膜仍被经验性地使用,并且在医疗环境中干扰病原体发育方面可能具有潜在用途。大肠杆菌是对其生物膜形成进行了详细研究的细菌之一,由于其遗传易操作性,在生物技术应用中备受青睐。在此,我们描述了两种新的遗传工具的开发,它们能够在天然位点组成型和诱导型表达任何感兴趣的基因或操纵子。除了为互补和过表达实验提供有价值的工具外,这两个紧凑的遗传盒还被用于通过控制两种生物膜促进因子——自转运抗原43黏附素和bscABZC纤维素操纵子,来调节大肠杆菌的生物膜形成能力。调节大肠杆菌或其他能够进行基因操作的细菌的生物膜形成能力,在许多工业和医疗应用中,对于减少和改善生物膜的影响可能都有用处。

相似文献

1
Tight modulation of Escherichia coli bacterial biofilm formation through controlled expression of adhesion factors.
Appl Environ Microbiol. 2007 May;73(10):3391-403. doi: 10.1128/AEM.02625-06. Epub 2007 Mar 23.
4
Linkage between cellular adherence and biofilm formation in Escherichia coli O157:H7 EDL933.
FEMS Microbiol Lett. 2011 Feb;315(1):46-53. doi: 10.1111/j.1574-6968.2010.02173.x. Epub 2010 Dec 17.
5
The transcriptional antiterminator RfaH represses biofilm formation in Escherichia coli.
J Bacteriol. 2006 Feb;188(4):1316-31. doi: 10.1128/JB.188.4.1316-1331.2006.
7
Regulatory role of MlrA in transcription activation of csgD, the master regulator of biofilm formation in Escherichia coli.
FEMS Microbiol Lett. 2010 Nov;312(2):160-8. doi: 10.1111/j.1574-6968.2010.02112.x. Epub 2010 Sep 27.
8
OmpA influences Escherichia coli biofilm formation by repressing cellulose production through the CpxRA two-component system.
Environ Microbiol. 2009 Oct;11(10):2735-46. doi: 10.1111/j.1462-2920.2009.02000.x. Epub 2009 Jul 6.
10
Effect of growth conditions on poly-N-acetylglucosamine expression and biofilm formation in Escherichia coli.
FEMS Microbiol Lett. 2008 Jun;283(1):36-41. doi: 10.1111/j.1574-6968.2008.01142.x.

引用本文的文献

1
Modified Tn transposon vectors for controlled chromosomal gene expression.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0155624. doi: 10.1128/aem.01556-24. Epub 2024 Sep 18.
2
Biophysical characterization of synthetic adhesins for predicting and tuning engineered living material properties.
Matter. 2024 Jun 5;7(6):2125-2143. doi: 10.1016/j.matt.2024.03.019. Epub 2024 Apr 22.
3
Differential Localization and Functional Specialization of Centromere-Like Sites in Replicons of .
Appl Environ Microbiol. 2022 Apr 26;88(8):e0020722. doi: 10.1128/aem.00207-22. Epub 2022 Apr 7.
7
Biofilm Lithography enables high-resolution cell patterning via optogenetic adhesin expression.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3698-3703. doi: 10.1073/pnas.1720676115. Epub 2018 Mar 19.
8
Insights into the structure and assembly of a bacterial cellulose secretion system.
Nat Commun. 2017 Dec 12;8(1):2065. doi: 10.1038/s41467-017-01523-2.
10
Lack of the PGA exopolysaccharide in Salmonella as an adaptive trait for survival in the host.
PLoS Genet. 2017 May 24;13(5):e1006816. doi: 10.1371/journal.pgen.1006816. eCollection 2017 May.

本文引用的文献

3
Bacterial biofilms within the clinical setting: what healthcare professionals should know.
J Hosp Infect. 2006 Dec;64(4):313-25. doi: 10.1016/j.jhin.2006.06.028.
4
Biofilms: implications in bioremediation.
Trends Microbiol. 2006 Sep;14(9):389-97. doi: 10.1016/j.tim.2006.07.001. Epub 2006 Jul 18.
7
Bioremediation of halogenated compounds: comparison of dehalogenating bacteria and improvement of catalyst stability.
Chemosphere. 2006 Nov;65(7):1146-52. doi: 10.1016/j.chemosphere.2006.04.007. Epub 2006 May 24.
8
A recombinant probiotic for treatment and prevention of cholera.
Gastroenterology. 2006 May;130(6):1688-95. doi: 10.1053/j.gastro.2006.02.005.
9
Development of a biofilm production-deficient Escherichia coli strain as a host for biotechnological applications.
Appl Environ Microbiol. 2006 May;72(5):3336-42. doi: 10.1128/AEM.72.5.3336-3342.2006.
10
Self-associating autotransporters, SAATs: functional and structural similarities.
Int J Med Microbiol. 2006 Aug;296(4-5):187-95. doi: 10.1016/j.ijmm.2005.10.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验