Gu Chong-Hui, Li Hua, Levons Jaquan, Lentz Kimberley, Gandhi Rajesh B, Raghavan Krishnaswamy, Smith Ronald L
Biopharmaceutics R&D, Bristol-Myers Squibb Co., New Brunswick, New Jersey, USA.
Pharm Res. 2007 Jun;24(6):1118-30. doi: 10.1007/s11095-007-9236-1. Epub 2007 Mar 24.
To develop a statistical model for predicting effect of food on the extent of absorption (area under the curve of time-plasma concentration profile, AUC) of drugs based on physicochemical properties.
Logistic regression was applied to establish the relationship between the effect of food (positive, negative or no effect) on AUC of 92 entries and physicochemical parameters, including clinical doses used in the food effect study, solubility (pH 7), dose number (dose/solubility at pH 7), calculated Log D (pH 7), polar surface area, total surface area, percent polar surface area, number of hydrogen bond donor, number of hydrogen bond acceptors, and maximum absorbable dose (MAD).
For compounds with MAD >or= clinical dose, the food effect can be predicted from the dose number category and Log D category, while for compounds with MAD < clinical dose, the food effect can be predicted from the dose number category alone. With cross validation, 74 out of 92 entries (80%) were predicted into the correct category. The correct predictions were 97, 79 and 68% for compounds with positive, negative and no food effect, respectively.
A logistic regression model based on dose, solubility, and permeability of compounds is developed to predict the food effect on AUC. Statistically, solubilization effect of food primarily accounted for the positive food effect on absorption while interference of food with absorption caused negative effect on absorption of compounds that are highly hydrophilic and probably with narrow window of absorption.
基于理化性质建立一个统计模型,用于预测食物对药物吸收程度(时间-血浆浓度曲线下面积,AUC)的影响。
应用逻辑回归分析来建立食物对92种药物AUC的影响(阳性、阴性或无影响)与理化参数之间的关系,这些理化参数包括食物效应研究中使用的临床剂量、溶解度(pH 7)、剂量数(剂量/pH 7时的溶解度)、计算得到的Log D(pH 7)、极性表面积、总表面积、极性表面积百分比、氢键供体数量、氢键受体数量以及最大可吸收剂量(MAD)。
对于MAD≥临床剂量的化合物,食物效应可从剂量数类别和Log D类别预测,而对于MAD<临床剂量的化合物,食物效应仅可从剂量数类别预测。通过交叉验证,92种药物中有74种(80%)被预测到正确类别。对于食物效应为阳性、阴性和无影响的化合物,正确预测率分别为97%、79%和68%。
建立了一个基于化合物剂量、溶解度和渗透性的逻辑回归模型,以预测食物对AUC的影响。从统计学角度来看,食物的增溶作用主要导致了食物对吸收的阳性影响,而食物对吸收的干扰则对高亲水性且可能吸收窗较窄的化合物的吸收产生负面影响。