International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan.
Sensors (Basel). 2023 Apr 13;23(8):3962. doi: 10.3390/s23083962.
Possible drug-food constituent interactions (DFIs) could change the intended efficiency of particular therapeutics in medical practice. The increasing number of multiple-drug prescriptions leads to the rise of drug-drug interactions (DDIs) and DFIs. These adverse interactions lead to other implications, e.g., the decline in medicament's effect, the withdrawals of various medications, and harmful impacts on the patients' health. However, the importance of DFIs remains underestimated, as the number of studies on these topics is constrained. Recently, scientists have applied artificial intelligence-based models to study DFIs. However, there were still some limitations in data mining, input, and detailed annotations. This study proposed a novel prediction model to address the limitations of previous studies. In detail, we extracted 70,477 food compounds from the FooDB database and 13,580 drugs from the DrugBank database. We extracted 3780 features from each drug-food compound pair. The optimal model was eXtreme Gradient Boosting (XGBoost). We also validated the performance of our model on one external test set from a previous study which contained 1922 DFIs. Finally, we applied our model to recommend whether a drug should or should not be taken with some food compounds based on their interactions. The model can provide highly accurate and clinically relevant recommendations, especially for DFIs that may cause severe adverse events and even death. Our proposed model can contribute to developing more robust predictive models to help patients, under the supervision and consultants of physicians, avoid DFI adverse effects in combining drugs and foods for therapy.
可能的药物-食物成分相互作用(DFIs)可能会改变医学实践中特定治疗药物的预期疗效。越来越多的多药物处方导致药物-药物相互作用(DDIs)和 DFI 的增加。这些不良相互作用导致其他影响,例如药物效果下降、各种药物撤回以及对患者健康的有害影响。然而,DFIs 的重要性仍然被低估,因为关于这些主题的研究数量有限。最近,科学家们已经应用基于人工智能的模型来研究 DFI。然而,在数据挖掘、输入和详细注释方面仍然存在一些局限性。本研究提出了一种新的预测模型来解决以前研究中的局限性。具体来说,我们从 FooDB 数据库中提取了 70477 种食物化合物,从 DrugBank 数据库中提取了 13580 种药物。我们从每个药物-食物化合物对中提取了 3780 个特征。最优模型是极端梯度提升(XGBoost)。我们还在一个来自先前研究的外部测试集中验证了我们模型的性能,该测试集包含 1922 个 DFI。最后,我们根据药物和食物的相互作用,应用我们的模型来推荐是否应该同时服用某些药物和食物。该模型可以提供高度准确和临床相关的建议,特别是对于可能导致严重不良事件甚至死亡的 DFI。我们提出的模型可以为开发更强大的预测模型做出贡献,以帮助患者在医生的监督和咨询下,避免在药物和食物联合治疗中发生 DFI 不良影响。