Suppr超能文献

一种利用具有线性相关性的平行轮廓解决三向数据中基质效应的新策略。

A novel strategy for solving matrix effect in three-way data using parallel profiles with linear dependencies.

作者信息

Bahram Morteza, Bro Rasmus

机构信息

Department of Chemistry, Faculty of Sciences, Urmia University, Urmia, Iran.

出版信息

Anal Chim Acta. 2007 Feb 19;584(2):397-402. doi: 10.1016/j.aca.2006.11.070. Epub 2006 Dec 3.

Abstract

This work presents a novel strategy for solving matrix effects using the second-order advantage and a new method called PARAllel profiles with LINear Dependencies (PARALIND). PARALIND is a generalization of parallel factor analysis (PARAFAC) and was developed to extend its use to problems with linearly dependent factors where normal PARAFAC analysis will fail to provide meaningful results. Such linearly dependent factors occur in standard addition with second-order data such as fluorescence excitation emission matrices (EEM). By successive standard addition of an analyte, the concentrations of the remaining components (interferences) remain constant and introduce linear dependency between interference concentrations in the samples. This theoretically leads to rank deficiency in the score matrix holding the relative concentrations when using PARAFAC for modeling. In practice, PARAFAC models of such data will mostly provide solutions where the score matrix is not rank deficient but a function of the noise in the data. This problem is shown to be solved by using PARALIND. In order to evaluate the applicability of the method a simulated as well as an experimental data set is tested. The results from experimental data relate to the direct determination of salicylic acid (SA), the main product of aspirin degradation, in undiluted human plasma by spectrofluorimetry.

摘要

这项工作提出了一种利用二阶优势解决基质效应的新策略,以及一种名为具有线性相关性的平行轮廓法(PARALIND)的新方法。PARALIND是平行因子分析(PARAFAC)的推广,旨在将其应用扩展到线性相关因子的问题,而在这种情况下,常规的PARAFAC分析无法提供有意义的结果。这种线性相关因子出现在二阶数据(如荧光激发发射矩阵(EEM))的标准加入法中。通过连续加入分析物,其余组分(干扰物)的浓度保持不变,并在样品中干扰物浓度之间引入线性相关性。从理论上讲,当使用PARAFAC进行建模时,这会导致包含相对浓度的得分矩阵出现秩亏缺。实际上,此类数据的PARAFAC模型大多会提供得分矩阵无秩亏缺但却是数据中噪声函数的解决方案。结果表明,使用PARALIND可以解决这个问题。为了评估该方法的适用性,对一个模拟数据集和一个实验数据集进行了测试。实验数据的结果涉及通过荧光光谱法直接测定未稀释人血浆中阿司匹林降解的主要产物水杨酸(SA)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验