Kikuta Hiroshi, Laplante Mary, Navratilova Pavla, Komisarczuk Anna Z, Engström Pär G, Fredman David, Akalin Altuna, Caccamo Mario, Sealy Ian, Howe Kerstin, Ghislain Julien, Pezeron Guillaume, Mourrain Philippe, Ellingsen Staale, Oates Andrew C, Thisse Christine, Thisse Bernard, Foucher Isabelle, Adolf Birgit, Geling Andrea, Lenhard Boris, Becker Thomas S
Sars Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway.
Genome Res. 2007 May;17(5):545-55. doi: 10.1101/gr.6086307. Epub 2007 Mar 26.
We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated "bystander" genes. Bystander genes are not specifically under the control of the regulatory elements that drive the target genes and are expressed in patterns that are different from those of the target genes. Reporter insertions distal to zebrafish developmental regulatory genes pax6.1/2, rx3, id1, and fgf8 and miRNA genes mirn9-1 and mirn9-5 recapitulate the expression patterns of these genes even if located inside or beyond bystander genes, suggesting that the regulatory domain of a developmental regulatory gene can extend into and beyond adjacent transcriptional units. We termed these chromosomal segments genomic regulatory blocks (GRBs). After whole genome duplication in teleosts, GRBs, including HCNEs and target genes, were often maintained in both copies, while bystander genes were typically lost from one GRB, strongly suggesting that evolutionary pressure acts to keep the single-copy GRBs of higher vertebrates intact. We show that loss of bystander genes and other mutational events suffered by duplicated GRBs in teleost genomes permits target gene identification and HCNE/target gene assignment. These findings explain the absence of evolutionary breakpoints from large vertebrate chromosomal segments and will aid in the recognition of position effect mutations within human GRBs.
我们报告了一种在脊椎动物基因组中维持远距离保守同线性的机制的证据。我们发现,最大的哺乳动物-硬骨鱼保守染色体片段由高度保守的非编码元件(HCNE)、其发育调控靶基因以及系统发育和功能上不相关的“旁观者”基因所跨越。旁观者基因并非特别受驱动靶基因的调控元件的控制,其表达模式与靶基因不同。在斑马鱼发育调控基因pax6.1/2、rx3、id1和fgf8以及miRNA基因mirn9-1和mirn9-5远端插入报告基因,即使位于旁观者基因内部或之外,也能重现这些基因的表达模式,这表明发育调控基因的调控域可以延伸到相邻转录单元之内及之外。我们将这些染色体片段称为基因组调控模块(GRB)。在硬骨鱼全基因组复制后,包括HCNE和靶基因在内的GRB通常在两个拷贝中都得以保留,而旁观者基因通常从一个GRB中丢失,这强烈表明进化压力促使高等脊椎动物的单拷贝GRB保持完整。我们表明,硬骨鱼基因组中复制的GRB所经历的旁观者基因丢失和其他突变事件有助于靶基因的识别以及HCNE/靶基因的定位。这些发现解释了大型脊椎动物染色体片段中不存在进化断点的原因,并将有助于识别人类GRB内的位置效应突变。