Suppr超能文献

CTCF 依赖性物理隔区和启动子竞争的调控域协同隔区。

Cooperative insulation of regulatory domains by CTCF-dependent physical insulation and promoter competition.

机构信息

Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain.

Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain.

出版信息

Nat Commun. 2024 Aug 23;15(1):7258. doi: 10.1038/s41467-024-51602-4.

Abstract

The specificity of gene expression during development requires the insulation of regulatory domains to avoid inappropriate enhancer-gene interactions. In vertebrates, this insulator function is mostly attributed to clusters of CTCF sites located at topologically associating domain (TAD) boundaries. However, TAD boundaries allow some physical crosstalk across regulatory domains, which is at odds with the specific and precise expression of developmental genes. Here we show that developmental genes and nearby clusters of CTCF sites cooperatively foster the robust insulation of regulatory domains. By genetically dissecting a couple of representative loci in mouse embryonic stem cells, we show that CTCF sites prevent undesirable enhancer-gene contacts (i.e. physical insulation), while developmental genes preferentially contribute to regulatory insulation through non-structural mechanisms involving promoter competition rather than enhancer blocking. Overall, our work provides important insights into the insulation of regulatory domains, which in turn might help interpreting the pathological consequences of certain structural variants.

摘要

发育过程中基因表达的特异性需要调控域的隔离,以避免不合适的增强子-基因相互作用。在脊椎动物中,这种绝缘功能主要归因于位于拓扑关联域(TAD)边界处的 CTCF 位点簇。然而,TAD 边界允许跨越调控域的一些物理串扰,这与发育基因的特异性和精确表达不一致。在这里,我们表明发育基因和附近的 CTCF 位点簇协同促进调控域的稳健隔离。通过在小鼠胚胎干细胞中对几个代表性基因座进行遗传剖析,我们表明 CTCF 位点阻止了不期望的增强子-基因接触(即物理隔离),而发育基因则通过涉及启动子竞争而非增强子阻断的非结构机制,优先促进调控隔离。总的来说,我们的工作为调控域的隔离提供了重要的见解,这反过来又可能有助于解释某些结构变体的病理后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5af/11344162/2ec75817b2d0/41467_2024_51602_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验