Calhorda Maria José, Krapp Andreas, Frenking Gernot
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
J Phys Chem A. 2007 Apr 19;111(15):2859-69. doi: 10.1021/jp057320v. Epub 2007 Mar 24.
Geometries and bond dissociation energies of the ylide compounds H2CPH3, H2CPMe3, H2CPF3, (BH2)2CPH3, H2CNH3, H2CAsH3, H2SiPH3, and (BH2)2SiPH3 have been calculated using ab initio (MP2, CBS-QB3) and DFT (B3LYP, BP86) methods. The nature of the ylidic bond R2E1-E2X3 was investigated with an energy decomposition analysis and with the domain-averaged Fermi hole (DAFH) analysis. The results of the latter method indicate that the peculiar features of the ylidic bond can be understood in terms of donor-acceptor interactions between closed-shell R2E1 and E2X3 fragments. The DAFH analysis clearly shows that there are two bonding contributions to the ylidic bond. The strength of the donor and acceptor contributions to the attractive orbital interactions can be estimated from the energy decomposition analysis (EDA) calculations, which give also the contributions of the electrostatic attraction and the Pauli repulsion of the chemical bonding. The EDA and DAFH results clearly show that the orbital interactions take place through the singlet ground state of the R2E1 fragment where the donor orbital of E1 yields pi-type back-donation while the E2X3 lone-pair orbital yields sigma-type bonding. Both bonds are polarized toward E2X3 when E2 = P, while the sigma-type bonding remains more polarized at E2X3 when E2 = N, As. This shows that the phosphorus ylides exhibit a particular bonding situation which is clearly different from that of the nitrogen and arsenic homologues. With ylides built around a P-C linkage, the pi-acceptor strength of phosphorus and the sigma-acceptor strength at carbon contribute to a double bond which is enhanced by electrostatic contributions. The strength of the sigma and pi components and the electrostatic attraction are then fine-tuned by the substituents at C and P, which yields a peculiar type of carbon-phosphorus bonding. The EDA data reveal that the relative strength of the ylidic bond may be determined not only by the R2E1 --> E2X3 pi back-donation, but also by the electrostatic contribution to the bonding. The calculations of the R2E1-E2X3 bond dissociation energy using ab initio methods predict that the order of the bond strength is H2C-PMe3 > H2C-PF3 > H2C-PH3 > (BH2)2C-PH3 > H2C-AsH3 > H2C-NH3 approximately H2Si-PH3 approximately (BH2)2Si-PH3. The DFT methods predict a similar trend, but they underestimate the bond strength of (BH2)2CPH3.
使用从头算(MP2、CBS-QB3)和密度泛函理论(DFT,B3LYP、BP86)方法计算了叶立德化合物H2CPH3、H2CPMe3、H2CPF3、(BH2)2CPH3、H2CNH3、H2CAsH3、H2SiPH3和(BH2)2SiPH3的几何结构和键解离能。通过能量分解分析和域平均费米空穴(DAFH)分析研究了叶立德键R2E1-E2X3的本质。后一种方法的结果表明,叶立德键的独特特征可以通过闭壳层R2E1和E2X3片段之间的供体-受体相互作用来理解。DAFH分析清楚地表明,叶立德键有两种成键贡献。对吸引轨道相互作用的供体和受体贡献的强度可以通过能量分解分析(EDA)计算来估计,该计算还给出了化学键的静电吸引和泡利排斥的贡献。EDA和DAFH结果清楚地表明,轨道相互作用通过R2E1片段的单重基态发生,其中E1的供体轨道产生π型反馈,而E2X3孤对轨道产生σ型成键。当E2 = P时,两个键都向E2X3极化,而当E2 = N、As时,σ型成键在E2X3处保持更大的极化。这表明磷叶立德表现出一种特殊的成键情况,与氮和砷的同系物明显不同。对于围绕P-C键构建的叶立德,磷的π受体强度和碳的σ受体强度有助于形成一个双键,该双键因静电贡献而增强。然后,σ和π成分的强度以及静电吸引通过C和P处的取代基进行微调,从而产生一种特殊类型的碳-磷键。EDA数据表明,叶立德键的相对强度不仅可以由R2E1→E2X3π反馈决定,还可以由键合的静电贡献决定。使用从头算方法计算R2E1-E2X3键解离能预测键强度顺序为H