Suppr超能文献

轨道重叠与化学键合。

Orbital overlap and chemical bonding.

作者信息

Krapp Andreas, Bickelhaupt F Matthias, Frenking Gernot

机构信息

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.

出版信息

Chemistry. 2006 Dec 13;12(36):9196-216. doi: 10.1002/chem.200600564.

Abstract

The chemical bonds in the diatomic molecules Li(2)-F(2) and Na(2)-Cl(2) at different bond lengths have been analyzed by the energy decomposition analysis (EDA) method using DFT calculations at the BP86/TZ2P level. The interatomic interactions are discussed in terms of quasiclassical electrostatic interactions DeltaE(elstat), Pauli repulsion DeltaE(Pauli) and attractive orbital interactions DeltaE(orb). The energy terms are compared with the orbital overlaps at different interatomic distances. The quasiclassical electrostatic interactions between two electrons occupying 1s, 2s, 2p(sigma), and 2p(pi) orbitals have been calculated and the results are analyzed and discussed. It is shown that the equilibrium distances of the covalent bonds are not determined by the maximum overlap of the sigma valence orbitals, which nearly always has its largest value at clearly shorter distances than the equilibrium bond length. The crucial interaction that prevents shorter bonds is not the loss of attractive interactions, but a sharp increase in the Pauli repulsion between electrons in valence orbitals. The attractive interactions of DeltaE(orb) and the repulsive interactions of DeltaE(Pauli) are both determined by the orbital overlap. The net effect of the two terms depends on the occupation of the valence orbitals, but the onset of attractive orbital interactions occurs at longer distances than Pauli repulsion, because overlap of occupied orbitals with vacant orbitals starts earlier than overlap between occupied orbitals. The contribution of DeltaE(elstat) in most nonpolar covalent bonds is strongly attractive. This comes from the deviation of quasiclassical electron-electron repulsion and nuclear-electron attraction from Coulomb's law for point charges. The actual strength of DeltaE(elstat) depends on the size and shape of the occupied valence orbitals. The attractive electrostatic contributions in the diatomic molecules Li(2)-F(2) come from the s and p(sigma) electrons, while the p(pi) electrons do not compensate for nuclear-nuclear repulsion. It is the interplay of the three terms DeltaE(orb), DeltaE(Pauli), and DeltaE(elstat) that determines the bond energies and equilibrium distances of covalently bonded molecules. Molecules like N(2) and O(2), which are usually considered as covalently bonded, would not be bonded without the quasiclassical attraction DeltaE(elstat).

摘要

利用BP86/TZ2P水平的密度泛函理论(DFT)计算,通过能量分解分析(EDA)方法分析了双原子分子Li₂ - F₂和Na₂ - Cl₂中不同键长下的化学键。从准经典静电相互作用ΔE(elstat)、泡利排斥ΔE(Pauli)和吸引轨道相互作用ΔE(orb)的角度讨论了原子间相互作用。将这些能量项与不同原子间距离下的轨道重叠进行了比较。计算了占据1s、2s、2p(σ)和2p(π)轨道的两个电子之间的准经典静电相互作用,并对结果进行了分析和讨论。结果表明,共价键的平衡距离并非由σ价轨道的最大重叠决定,σ价轨道的最大重叠几乎总是在比平衡键长明显短的距离处具有最大值。阻止键长缩短的关键相互作用不是吸引相互作用的损失,而是价轨道中电子间泡利排斥的急剧增加。ΔE(orb)的吸引相互作用和ΔE(Pauli)的排斥相互作用均由轨道重叠决定。这两项的净效应取决于价轨道的占据情况,但吸引轨道相互作用的开始距离比泡利排斥更长,因为占据轨道与空轨道的重叠比占据轨道之间的重叠更早开始。在大多数非极性共价键中,ΔE(elstat)的贡献具有很强的吸引力。这源于准经典电子 - 电子排斥和核 - 电子吸引偏离了点电荷的库仑定律。ΔE(elstat)的实际强度取决于占据价轨道的大小和形状。双原子分子Li₂ - F₂中的吸引静电贡献来自s和p(σ)电子,而p(π)电子无法补偿核 - 核排斥。正是ΔE(orb)、ΔE(Pauli)和ΔE(elstat)这三项的相互作用决定了共价键合分子的键能和平衡距离。像N₂和O₂这样通常被认为是共价键合的分子,如果没有准经典吸引ΔE(elstat)就不会成键。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验