Suppr超能文献

光学涡旋阱内单个水滴的可控收缩与再膨胀。

Controlled shrinkage and re-expansion of a single aqueous droplet inside an optical vortex trap.

作者信息

Jeffries Gavin D M, Kuo Jason S, Chiu Daniel T

机构信息

Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.

出版信息

J Phys Chem B. 2007 Mar 22;111(11):2806-12. doi: 10.1021/jp068902v. Epub 2007 Feb 27.

Abstract

This paper describes the shrinkage and re-expansion of individual femtoliter-volume aqueous droplets that were suspended in an organic medium and held in an optical vortex trap. To elucidate the mechanism behind this phenomenon, we constructed a heat- and mass-transfer model and carried out experimental verifications of our model. From these studies, we conclude that an evaporation mechanism sufficiently describes the shrinkage of aqueous droplets held in a vortex trap, whereas a mechanism based on the supersaturation of the organic phase by water that surrounds the droplet adequately explains the re-expansion of the shrunk droplet. The proposed mechanisms correlated well with experimental observations using different organic media, when H2O was replaced with D2O and when an optical tweezer was used to induce droplet shrinkage rather than an optical vortex trap. For H2O droplets, the temperature rise within the droplet during shrinkage was on the order of 1 K or less, owing to the rapid thermal conduction of heat away from the droplet at the microscale and the sharp increase in solubility for water by the organic phase with slight elevations in temperature. Because most chemical species confined to droplets can be made impenetrable to the aqueous/organic interface, a change in the volume of aqueous droplets translates into a change in concentration of the dissolved species within the droplets. Therefore, this phenomenon should find use in the study of fundamental chemical processes that are sensitive to concentration, such as macromolecular crowding and protein nucleation and crystallization.

摘要

本文描述了悬浮于有机介质中并被捕获在光学涡旋阱中的单个飞升体积水滴的收缩和再膨胀过程。为阐明这一现象背后的机制,我们构建了一个传热传质模型,并对该模型进行了实验验证。通过这些研究,我们得出结论:蒸发机制足以解释涡旋阱中水滴的收缩,而基于围绕水滴的有机相被水过饱和的机制则能充分解释收缩后水滴的再膨胀。当用D2O替代H2O、使用光镊而非光学涡旋阱来诱导水滴收缩时,所提出的机制与使用不同有机介质的实验观测结果具有良好的相关性。对于H2O水滴,在收缩过程中水滴内部的温度升高约为1K或更低,这是由于在微观尺度上热量从水滴快速传导出去,以及有机相对水的溶解度随温度略有升高而急剧增加。由于大多数局限于水滴内的化学物质无法穿透水/有机界面,水滴体积的变化会转化为水滴内溶解物质浓度的变化。因此,这一现象应可用于研究对浓度敏感的基本化学过程,如大分子拥挤以及蛋白质成核和结晶。

相似文献

1
Controlled shrinkage and re-expansion of a single aqueous droplet inside an optical vortex trap.
J Phys Chem B. 2007 Mar 22;111(11):2806-12. doi: 10.1021/jp068902v. Epub 2007 Feb 27.
2
Vortex-trap-induced fusion of femtoliter-volume aqueous droplets.
Anal Chem. 2007 Jan 1;79(1):224-8. doi: 10.1021/ac061586w.
4
Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
Adv Colloid Interface Sci. 2007 Oct 31;134-135:72-88. doi: 10.1016/j.cis.2007.04.022. Epub 2007 May 5.
5
Evaporation dynamics of a surrogate respiratory droplet in a vortical environment.
J Colloid Interface Sci. 2022 Oct;623:541-551. doi: 10.1016/j.jcis.2022.05.061. Epub 2022 May 14.
6
Surfactant solutions and porous substrates: spreading and imbibition.
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.
8
Ion-induced nucleation in solution: promotion of solute nucleation in charged levitated droplets.
J Am Chem Soc. 2007 Sep 19;129(37):11364-77. doi: 10.1021/ja067094i. Epub 2007 Aug 24.
9
Drying Kinetics of Salt Solution Droplets: Water Evaporation Rates and Crystallization.
J Phys Chem B. 2019 Jan 10;123(1):266-276. doi: 10.1021/acs.jpcb.8b09584. Epub 2018 Dec 28.
10
Combining Mass Spectrometry of Picoliter Samples with a Multicompartment Electrodynamic Trap for Probing the Chemistry of Droplet Arrays.
Anal Chem. 2020 Sep 1;92(17):11943-11952. doi: 10.1021/acs.analchem.0c02343. Epub 2020 Aug 14.

引用本文的文献

1
Microfluidics-based strategies for molecular diagnostics of infectious diseases.
Mil Med Res. 2022 Mar 18;9(1):11. doi: 10.1186/s40779-022-00374-3.
2
Controlling mass transport in microfluidic devices.
Annu Rev Anal Chem (Palo Alto Calif). 2011;4:275-96. doi: 10.1146/annurev-anchem-061010-113926.
3
Concentration of glycerol in aqueous microdroplets by selective removal of water.
Anal Chem. 2010 Feb 15;82(4):1288-91. doi: 10.1021/ac9022742.
4
Droplets for ultrasmall-volume analysis.
Anal Chem. 2009 Jul 1;81(13):5111-8. doi: 10.1021/ac900306q.
5
Chemistry and biology in femtoliter and picoliter volume droplets.
Acc Chem Res. 2009 May 19;42(5):649-58. doi: 10.1021/ar8002464.

本文引用的文献

1
Optical Constants of Water in the 200-nm to 200-microm Wavelength Region.
Appl Opt. 1973 Mar 1;12(3):555-63. doi: 10.1364/AO.12.000555.
2
Aerosol heating and vaporization by pulsed light beams.
Appl Opt. 1984 Jan 1;23(1):148. doi: 10.1364/ao.23.000148.
3
Vortex-trap-induced fusion of femtoliter-volume aqueous droplets.
Anal Chem. 2007 Jan 1;79(1):224-8. doi: 10.1021/ac061586w.
5
Postnucleation droplet growth in supersaturated gas with arbitrary vapor concentration.
J Chem Phys. 2004 Jun 8;120(22):10455-69. doi: 10.1063/1.1738107.
7
Concentrating solutes and nanoparticles within individual aqueous microdroplets.
Anal Chem. 2004 Mar 1;76(5):1222-7. doi: 10.1021/ac035196a.
8
Laser-induced heating in optical traps.
Biophys J. 2003 Feb;84(2 Pt 1):1308-16. doi: 10.1016/S0006-3495(03)74946-7.
9
Late stage kinetics of a phase separation induced by a cw laser wave in binary liquid mixtures.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt B):5804-18. doi: 10.1103/physreve.59.5804.
10
Chemical transformations in individual ultrasmall biomimetic containers.
Science. 1999 Mar 19;283(5409):1892-5. doi: 10.1126/science.283.5409.1892.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验