Marko Adam C, Stafford Kate, Wymore Troy
Pittsburgh Supercomputing Center, National Resource for Biomedical Supercomputing, 300 South Craig Street, Pittsburgh, Pennsylvania 15213, USA.
J Chem Inf Model. 2007 May-Jun;47(3):1263-70. doi: 10.1021/ci600485s. Epub 2007 Mar 29.
Despite recent advances in fold recognition algorithms that identify template structures with distant homology to the target sequence, the quality of the target-template alignment can be a major problem for distantly related proteins in comparative modeling. Here we report for the first time on the use of ensembles of pairwise alignments obtained by stochastic backtracking as a means to improve three-dimensional comparative protein models. In every one of the 35 cases, the ensemble produced by the program probA resulted in alignments that were closer to the structural alignment than those obtained from the optimal alignment. In addition, we examined the lowest energy structure among these ensembles from four different structural assessment methods and compared these with the optimal and structural alignment model. The structural assessment methods consisted of the DFIRE, DOPE, and ProsaII statistical potential energies and the potential energy from the CHARMM protein force field coupled to a Generalized Born implicit solvent model. The results demonstrate that the generation of alignment ensembles through stochastic backtracking using probA combined with one of the statistical potentials for assessing three-dimensional structures can be used to improve comparative models.
尽管在折叠识别算法方面取得了最新进展,这些算法能够识别与目标序列具有远源同源性的模板结构,但对于比较建模中关系较远的蛋白质而言,目标 - 模板比对的质量可能是一个主要问题。在此,我们首次报告使用通过随机回溯获得的成对比对集合作为改进三维蛋白质比较模型的一种方法。在35个案例中的每一个案例中,程序probA生成的比对集合所得到的比对结果都比从最优比对中获得的结果更接近结构比对。此外,我们从四种不同的结构评估方法中检查了这些比对集合中的最低能量结构,并将其与最优比对模型和结构比对模型进行比较。结构评估方法包括DFIRE、DOPE和ProsaII统计势能以及与广义玻恩隐式溶剂模型耦合的CHARMM蛋白质力场的势能。结果表明,通过使用probA进行随机回溯生成比对集合,并结合一种用于评估三维结构的统计势能,可用于改进比较模型。