Nagrath Deepak, Avila-Elchiver Marco, Berthiaume Francois, Tilles Arno W, Messac Achille, Yarmush Martin L
Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
Ann Biomed Eng. 2007 Jun;35(6):863-85. doi: 10.1007/s10439-007-9283-0. Epub 2007 Mar 29.
Flux balance analysis (FBA) provides a framework for the estimation of intracellular fluxes and energy balance analysis (EBA) ensures the thermodynamic feasibility of the computed optimal fluxes. Previously, these techniques have been used to obtain optimal fluxes that maximize a single objective. Because mammalian systems perform various functions, a multi-objective approach is needed when seeking optimal flux distributions in such systems. For example, hepatocytes perform several metabolic functions at various levels depending on environmental conditions; furthermore, there is a potential benefit to enhance some of these functions for applications such as bioartificial liver (BAL) support devices. Herein we developed a multi-objective optimization approach that couples the normalized Normal Constraint (NC) with both FBA and EBA to obtain multi-objective Pareto-optimal solutions. We investigated the Pareto frontiers in gluconeogenic and glycolytic hepatocytes for various combinations of liver-specific objectives (albumin synthesis, glutathione synthesis, NADPH synthesis, ATP generation, and urea secretion). Next, we evaluated the impact of experimental flux measurements on the Pareto frontiers. We found that measurements induce dramatic changes in Pareto frontiers and further constrain the network fluxes. This multi-objective optimality analysis may help explain certain features of the metabolic control of hepatocytes, which is relevant to the response to hepatocytes and liver to various physiological stimuli and disease states.
通量平衡分析(FBA)提供了一个用于估计细胞内通量的框架,而能量平衡分析(EBA)则确保了所计算的最优通量在热力学上的可行性。此前,这些技术已被用于获得使单一目标最大化的最优通量。由于哺乳动物系统执行多种功能,因此在寻找此类系统中的最优通量分布时需要采用多目标方法。例如,肝细胞根据环境条件在不同水平上执行多种代谢功能;此外,对于生物人工肝(BAL)支持装置等应用而言,增强其中一些功能可能会带来潜在益处。在此,我们开发了一种多目标优化方法,该方法将归一化的正态约束(NC)与FBA和EBA相结合,以获得多目标帕累托最优解。我们研究了糖异生和糖酵解肝细胞中针对肝脏特异性目标(白蛋白合成、谷胱甘肽合成、NADPH合成、ATP生成和尿素分泌)的各种组合的帕累托前沿。接下来,我们评估了实验通量测量对帕累托前沿的影响。我们发现测量会导致帕累托前沿发生显著变化,并进一步限制网络通量。这种多目标最优性分析可能有助于解释肝细胞代谢控制的某些特征,这与肝细胞和肝脏对各种生理刺激及疾病状态的反应相关。