Suppr超能文献

使用NISE方法进行代谢网络分析的多目标通量平衡

Multiobjective flux balancing using the NISE method for metabolic network analysis.

作者信息

Oh Young-Gyun, Lee Dong-Yup, Lee Sang Yup, Park Sunwon

机构信息

Department of Chemical and Biomolecular Engineering (BK21 program), Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea.

出版信息

Biotechnol Prog. 2009 Jul-Aug;25(4):999-1008. doi: 10.1002/btpr.193.

Abstract

Flux balance analysis (FBA) is well acknowledged as an analysis tool of metabolic networks in the framework of metabolic engineering. However, FBA has a limitation for solving a multiobjective optimization problem which considers multiple conflicting objectives. In this study, we propose a novel multiobjective flux balance analysis method, which adapts the noninferior set estimation (NISE) method (Solanki et al., 1993) for multiobjective linear programming (MOLP) problems. NISE method can generate an approximation of the Pareto curve for conflicting objectives without redundant iterations of single objective optimization. Furthermore, the flux distributions at each Pareto optimal solution can be obtained for understanding the internal flux changes in the metabolic network. The functionality of this approach is shown by applying it to a genome-scale in silico model of E. coli. Multiple objectives for the poly(3-hydroxybutyrate) [P(3HB)] production are considered simultaneously, and relationships among them are identified. The Pareto curve for maximizing succinic acid production vs. maximizing biomass production is used for the in silico analysis of various combinatorial knockout strains. This proposed method accelerates the strain improvement in the metabolic engineering by reducing computation time of obtaining the Pareto curve and analysis time of flux distribution at each Pareto optimal solution.

摘要

通量平衡分析(FBA)作为代谢工程框架下代谢网络的一种分析工具已得到广泛认可。然而,FBA在解决考虑多个相互冲突目标的多目标优化问题时存在局限性。在本研究中,我们提出了一种新颖的多目标通量平衡分析方法,该方法将非劣解集估计(NISE)方法(Solanki等人,1993年)应用于多目标线性规划(MOLP)问题。NISE方法能够生成相互冲突目标的帕累托曲线近似值,而无需进行单目标优化的冗余迭代。此外,可获得每个帕累托最优解处的通量分布,以了解代谢网络中的内部通量变化。通过将该方法应用于大肠杆菌的基因组规模计算机模拟模型,展示了其功能。同时考虑了聚(3-羟基丁酸酯)[P(3HB)]生产的多个目标,并确定了它们之间的关系。利用琥珀酸产量最大化与生物量产量最大化的帕累托曲线对各种组合敲除菌株进行计算机模拟分析。该方法通过减少获取帕累托曲线的计算时间和每个帕累托最优解处通量分布的分析时间,加速了代谢工程中的菌株改良。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验