Respondek Michal, Madl Tobias, Göbl Christoph, Golser Regina, Zangger Klaus
Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria.
J Am Chem Soc. 2007 Apr 25;129(16):5228-34. doi: 10.1021/ja069004f. Epub 2007 Mar 31.
Many antimicrobial peptides form alpha-helices when bound to a membrane. In addition, around 80% of residues in membrane-bound proteins are found in alpha-helical regions. The orientation and location of such helical peptides and proteins in the membrane are key factors determining their function and activity. Here we present a new solution state NMR method for obtaining the orientation of helical peptides in a membrane-mimetic environment (micelle-bound) without any chemical perturbation of the peptide-micelle system. By monitoring proton longitudinal relaxation rates upon addition of the freely water-soluble and inert paramagnetic probe Gd(DTPA-BMA) to an alpha-helical peptide, a wavelike pattern with a periodicity of 3.6 residues per turn is observed. The tilt and azimuth (rotation) angle of the helix determine the shape of this paramagnetic relaxation wave and can be obtained by least-square fitting of measured relaxation enhancements. Results are presented for the 15-residue antimicrobial peptide CM15 which forms an amphipathic helix almost parallel to the surface of the micelle. Thus, a few fast experiments enable the identification of helical regions and determination of the helix orientation within the micelle without the need for covalent modification, isotopic labeling, or sophisticated equipment. This approach opens a path toward the topology determination of alpha-helical membrane-proteins without the need for a complete NOE-based structure determination.
许多抗菌肽与膜结合时会形成α螺旋。此外,膜结合蛋白中约80%的残基位于α螺旋区域。此类螺旋肽和蛋白在膜中的方向和位置是决定其功能和活性的关键因素。在此,我们提出一种新的溶液态核磁共振方法,用于在模拟膜环境(结合胶束)中获得螺旋肽的方向,且不对肽-胶束系统造成任何化学扰动。通过向α螺旋肽中加入水溶性自由且惰性的顺磁探针钆(DTPA - BMA)并监测质子纵向弛豫率,观察到一种每圈有3.6个残基周期性的波状模式。螺旋的倾斜角和方位角(旋转角)决定了这种顺磁弛豫波的形状,可通过对测量的弛豫增强进行最小二乘法拟合来获得。给出了15个残基抗菌肽CM15的结果,它形成了一个几乎与胶束表面平行的两亲性螺旋。因此,通过一些快速实验就能识别螺旋区域并确定胶束内螺旋的方向,无需共价修饰、同位素标记或复杂设备。这种方法为无需基于完全的核欧沃豪斯效应(NOE)结构测定来确定α螺旋膜蛋白的拓扑结构开辟了一条道路。