Suppr超能文献

大肠杆菌中的跨损伤合成:来自NarI突变热点的经验教训。

Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot.

作者信息

Fuchs Robert P, Fujii Shingo

机构信息

Genome Instability and Carcinogenesis, CNRS FRE 2931, 31 Chemin Joseph Aiguier, Marseille, France.

出版信息

DNA Repair (Amst). 2007 Jul 1;6(7):1032-41. doi: 10.1016/j.dnarep.2007.02.021. Epub 2007 Apr 2.

Abstract

Duplication of DNA containing damaged bases is a challenge to DNA polymerases that normally replicate with high speed, high accuracy and high processivity undamaged templates only. When a replicative DNA polymerase encounters a chemically altered base that it is unable to copy, a process called translesion synthesis (TLS) takes place during which the replicative polymerase is transiently replaced by a so-called specialized or lesion bypass polymerase. In addition to the central players that are the replicative and translesion DNA polymerases, TLS pathways involve accessory factors such as the general replication processivity factor (i.e. the beta-clamp in prokaryotes and PCNA in eukaryotes). In Escherichia coli, besides the beta-clamp, RecA plays a fundamental role as a co-factor of Pol V the major bypass polymerase in this organism. An integrated view of TLS pathways necessarily requires both genetic and biochemical studies. In this review we will attempt to summarize the insights into TLS gained over the last 25 years by studying a frameshift mutation hot spot, the NarI site. This site was initially discovered by serendipity when establishing a forward mutation spectrum induced by a chemical hepatocarcinogen, N-2-acetylaminofluorene (AAF). Indeed, this chemical carcinogen covalently binds to DNA forming adducts with guanine residues. When bound to G* in the NarI site, 5'-GGCGCC-, AAF induces the loss of the GpC dinucleotide at a frequency that is approximately 10(7)-fold higher than the spontaneous frequency. In vivo studies showed that the NarI mutation hot spot is neither restricted to the NarI sequence itself, nor to the carcinogen AAF. Instead, the hot spot requires a sequence containing at least two GpC repeats and any of a family of aromatic amides and nitro aromatic compounds that form a large class of human carcinogens. Genetic analysis initially revealed that the NarI frameshift pathway is SOS dependent but umuDC (i.e. Pol V) independent. More recently, DNA Pol II was identified as the enzyme responsible of this frameshift pathway. Concurrently the AAF adduct in the NarI site can be bypassed in an error-free way by Pol V. The NarI site thus offers a unique possibility to study the interplay between two specialized DNA polymerases, Pol II and Pol V, that can both extend replication intermediates formed when the replicative Pol III dissociates in the vicinity of the damage. Full reconstitution of the two pathways led us to highlight a key feature for TLS pathways, namely that it is critical the specialized DNA polymerase synthesizes, during the course of a single binding event, a patch of DNA synthesis (TLS patch) that is long enough as to "hide the lesion induced distortion" from the proofreading activity upon reloading of the replicative DNA polymerase (or any exonuclease that may get access to the primer when the specialized DNA polymerase detaches). The beta-clamp, to which all DNA polymerases bind, plays a critical role in allowing the specialized DNA polymerases to synthesize TLS patches that are long enough to resist such "external proofreading" activities.

摘要

复制含有受损碱基的DNA对DNA聚合酶而言是一项挑战,这些聚合酶通常仅能高速、高精度且高效地复制未受损模板。当复制性DNA聚合酶遇到无法复制的化学修饰碱基时,就会发生一种称为跨损伤合成(TLS)的过程,在此过程中,复制性聚合酶会被所谓的特殊或损伤旁路聚合酶暂时取代。除了复制性和跨损伤DNA聚合酶这些核心参与者外,TLS途径还涉及辅助因子,如一般的复制持续性因子(即原核生物中的β夹子和真核生物中的增殖细胞核抗原)。在大肠杆菌中,除了β夹子外,RecA作为该生物体中主要的旁路聚合酶Pol V的辅助因子发挥着重要作用。对TLS途径的综合理解必然需要遗传和生化研究。在本综述中,我们将试图总结过去25年通过研究一个移码突变热点——NarI位点而获得的对TLS的见解。这个位点最初是在建立由化学致癌物N - 2 - 乙酰氨基芴(AAF)诱导的正向突变谱时偶然发现的。实际上,这种化学致癌物与DNA共价结合,与鸟嘌呤残基形成加合物。当与NarI位点中的G结合时,5'-GGCGCC-,AAF诱导G*pC二核苷酸的丢失频率比自发频率高约10^7倍。体内研究表明,NarI突变热点既不限于NarI序列本身,也不限于致癌物AAF。相反,该热点需要一个至少包含两个GpC重复序列的序列以及一类芳香酰胺和硝基芳香化合物中的任何一种,这些化合物构成了一大类人类致癌物。遗传分析最初表明,NarI移码途径依赖SOS但不依赖umuDC(即Pol V)。最近,DNA Pol II被鉴定为负责此移码途径的酶。同时,NarI位点中的AAF加合物可以被Pol V以无错误的方式绕过。因此,NarI位点提供了一个独特的机会来研究两种特殊DNA聚合酶Pol II和Pol V之间的相互作用,它们都可以延伸当复制性Pol III在损伤附近解离时形成的复制中间体。这两种途径的完全重建使我们突出了TLS途径的一个关键特征,即特殊DNA聚合酶在单次结合事件过程中合成足够长的一段DNA合成(TLS片段)至关重要,这样在重新加载复制性DNA聚合酶(或当特殊DNA聚合酶分离时可能接触引物的任何核酸外切酶)时,能够“隐藏损伤诱导的扭曲”以免被校对活性检测到。所有DNA聚合酶都结合的β夹子在允许特殊DNA聚合酶合成足够长以抵抗此类“外部校对”活动的TLS片段方面起着关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验