Burrone Juan, Li Zhiying, Murthy Venkatesh N
MRC Center for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
Nat Protoc. 2006;1(6):2970-8. doi: 10.1038/nprot.2006.449.
Genetically encoded fluorescent probes have become indispensable tools in the biological sciences. Studies of synaptic vesicle recycling have been facilitated by a group of GFP-derived probes called pHluorins. These probes exploit changes in pH that accompany exocytosis and recapture of synaptic vesicles. Here we describe how these synaptic tracers can be used in rodent hippocampal neurons to monitor the synaptic vesicle cycle in real time and to obtain mechanistic insights about it. Synapses can be observed in living samples using a wide-field fluorescence microscope and a cooled charge-coupled device camera. A simple specimen chamber allows electrical stimulation of synapses to evoke exocytosis in a precisely controlled manner. We present protocols to measure various parameters of the synaptic vesicle cycle. This technique can be easily adapted to study different classes of synapses from wild-type and mutant mice. Once cultured neurons expressing synaptopHluorin are available, the whole procedure should take about 2 h.
基因编码荧光探针已成为生物科学中不可或缺的工具。一组名为pHluorins的源自绿色荧光蛋白(GFP)的探针推动了对突触小泡循环的研究。这些探针利用了伴随突触小泡胞吐和重新摄取过程的pH变化。在此,我们描述了如何在啮齿动物海马神经元中使用这些突触示踪剂来实时监测突触小泡循环,并获得有关其机制的见解。使用宽场荧光显微镜和冷却电荷耦合器件相机可以在活样本中观察突触。一个简单的标本室允许对突触进行电刺激,以精确控制的方式诱发胞吐作用。我们提供了测量突触小泡循环各种参数的方案。该技术可以很容易地用于研究来自野生型和突变小鼠的不同类型的突触。一旦获得表达突触pH荧光蛋白的培养神经元,整个过程大约需要2小时。