Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53705
Howard Hughes Medical Institute, Madison, Wisconsin 53705.
J Neurosci. 2023 May 10;43(19):3421-3438. doi: 10.1523/JNEUROSCI.1356-22.2023. Epub 2023 Mar 30.
Mitochondria exert powerful control over cellular physiology, contributing to ion homeostasis, energy production, and metabolite biosynthesis. The trafficking and function of these organelles are particularly important in neurons, with impaired mitochondrial function or altered morphology observed in every neurodegenerative disorder studied. While mitochondrial biosynthetic products play a crucial role in maintaining cellular function, their resulting byproducts can have negative consequences. Thus, organelle quality control (QC) mechanisms that maintain mitochondrial function are imperative to restrict destructive signaling cascades in the cell. Axons are particularly sensitive to damage, and there is little consensus regarding the mechanisms that mediate mitochondrial QC in this compartment. Here, we first investigated the unstressed behavior of mitochondria in rat hippocampal neurons of mixed sex, focusing on mitochondrial trafficking and fusion to better understand potential QC mechanisms. We observed size and redox asymmetry of mitochondrial traffic in axons, suggesting an active QC mechanism in this compartment. We also document biochemical complementation upon the fusion and fission of axonal mitochondria. Eliminating fusion by knocking down the neuronal mitochondrial fusion protein mitofusin 2 (MFN2) reduced the rates of axonal mitochondrial trafficking and fusion, decreased the levels of synaptic vesicle (SV) proteins, inhibited exocytosis, and impaired SV recruitment from the reserve pool during extended stimulation. MFN2 knockdown also resulted in presynaptic Ca dyshomeostasis. Remarkably, upon MFN2 knockdown, presynaptic mitochondria sequestered Ca more efficiently, effectively limiting presynaptic Ca transients during stimulation. These results support an active mitochondrial trafficking and fusion-related QC process that supports presynaptic Ca handling and the SV cycle. Decreased or altered mitochondrial function is observed in many disease states. All neurodegenerative diseases co-present with some sort of mitochondrial abnormality. Therefore, identifying quality control mechanisms that sustain the mitochondrial network in neurons, and particularly in axons, is of significant interest. The response of axonal mitochondria to acutely applied toxins or injury has been studied in detail. Although informative, the response of neurons to these insults might not be physiologically relevant, so it is crucial to also study the basal behavior of axonal mitochondria. Here, we use fluorescent biosensors to investigate the mitochondrial network in neurons and examine the role of mitofusin 2 in maintaining the axonal mitochondrial network and in supporting the synaptic vesicle cycle.
线粒体对细胞生理学具有强大的控制作用,有助于离子稳态、能量产生和代谢物生物合成。这些细胞器的运输和功能在神经元中尤为重要,在研究的每一种神经退行性疾病中都观察到线粒体功能受损或形态改变。虽然线粒体生物合成产物在维持细胞功能方面起着至关重要的作用,但它们的副产物也可能产生负面影响。因此,维持线粒体功能的细胞器质量控制 (QC) 机制对于限制细胞内破坏性信号级联至关重要。轴突对损伤特别敏感,而对于介导该部位线粒体 QC 的机制尚未达成共识。在这里,我们首先研究了混合性别大鼠海马神经元中线粒体的未受应激行为,重点研究线粒体运输和融合,以更好地理解潜在的 QC 机制。我们观察到轴突中线粒体运输的大小和氧化还原不对称性,表明该部位存在主动 QC 机制。我们还记录了轴突线粒体融合和裂变后的生化互补。通过敲低神经元线粒体融合蛋白 mitofusin 2 (MFN2) 消除融合会降低轴突中线粒体运输和融合的速率,降低突触小泡 (SV) 蛋白水平,抑制胞吐作用,并在延长刺激期间损害 SV 从储备池的募集。MFN2 敲低也导致突触前 Ca 稳态失调。值得注意的是,在 MFN2 敲低后,突触前线粒体更有效地摄取 Ca,有效地限制了刺激期间的突触前 Ca 瞬变。这些结果支持一种活跃的线粒体运输和融合相关的 QC 过程,该过程支持突触前 Ca 处理和 SV 循环。在许多疾病状态下观察到线粒体功能降低或改变。所有神经退行性疾病都伴有某种形式的线粒体异常。因此,确定维持神经元中线粒体网络的质量控制机制,特别是在轴突中,具有重要意义。已经详细研究了急性应用毒素或损伤对线粒体的反应。虽然这很有启发性,但神经元对这些刺激的反应可能与生理无关,因此研究轴突中线粒体的基础行为至关重要。在这里,我们使用荧光生物传感器研究神经元中的线粒体网络,并研究 mitofusin 2 在维持轴突线粒体网络和支持突触小泡循环中的作用。