Suppr超能文献

定性网络:一种分析生物信号网络的符号学方法。

Qualitative networks: a symbolic approach to analyze biological signaling networks.

作者信息

Schaub Marc A, Henzinger Thomas A, Fisher Jasmin

机构信息

School of Computer and Communication Sciences EPFL, 1015 Lausanne, Switzerland.

出版信息

BMC Syst Biol. 2007 Jan 8;1:4. doi: 10.1186/1752-0509-1-4.

Abstract

BACKGROUND

A central goal of Systems Biology is to model and analyze biological signaling pathways that interact with one another to form complex networks. Here we introduce Qualitative networks, an extension of Boolean networks. With this framework, we use formal verification methods to check whether a model is consistent with the laboratory experimental observations on which it is based. If the model does not conform to the data, we suggest a revised model and the new hypotheses are tested in-silico.

RESULTS

We consider networks in which elements range over a small finite domain allowing more flexibility than Boolean values, and add target functions that allow to model a rich set of behaviors. We propose a symbolic algorithm for analyzing the steady state of these networks, allowing us to scale up to a system consisting of 144 elements and state spaces of approximately 10(86) states. We illustrate the usefulness of this approach through a model of the interaction between the Notch and the Wnt signaling pathways in mammalian skin, and its extensive analysis.

CONCLUSION

We introduce an approach for constructing computational models of biological systems that extends the framework of Boolean networks and uses formal verification methods for the analysis of the model. This approach can scale to multicellular models of complex pathways, and is therefore a useful tool for the analysis of complex biological systems. The hypotheses formulated during in-silico testing suggest new avenues to explore experimentally. Hence, this approach has the potential to efficiently complement experimental studies in biology.

摘要

背景

系统生物学的一个核心目标是对相互作用形成复杂网络的生物信号通路进行建模和分析。在此,我们引入定性网络,它是布尔网络的一种扩展。利用这个框架,我们使用形式验证方法来检查一个模型是否与其所基于的实验室实验观察结果一致。如果模型与数据不符,我们会提出一个修订后的模型,并在计算机上对新的假设进行测试。

结果

我们考虑元素取值范围在一个小的有限域内的网络,这比布尔值具有更大的灵活性,并添加了目标函数,从而能够对丰富的行为集进行建模。我们提出了一种用于分析这些网络稳态的符号算法,使我们能够扩展到一个由144个元素组成且状态空间约为10(86)个状态的系统。我们通过哺乳动物皮肤中Notch信号通路和Wnt信号通路之间相互作用的模型及其广泛分析,说明了这种方法的实用性。

结论

我们引入了一种构建生物系统计算模型的方法,该方法扩展了布尔网络的框架,并使用形式验证方法来分析模型。这种方法可以扩展到复杂通路的多细胞模型,因此是分析复杂生物系统的一个有用工具。在计算机测试过程中形成的假设为实验探索提供了新的途径。因此,这种方法有潜力有效地补充生物学中的实验研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c227/1839894/d450c1a2d551/1752-0509-1-4-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验