Quach Minh, Brunel Nicolas, d'Alché-Buc Florence
IBISC FRE CNRS 2873, University of Evry and Genopole 523, place des terrasses 91025 Evry, France.
Bioinformatics. 2007 Dec 1;23(23):3209-16. doi: 10.1093/bioinformatics/btm510.
Statistical inference of biological networks such as gene regulatory networks, signaling pathways and metabolic networks can contribute to build a picture of complex interactions that take place in the cell. However, biological systems considered as dynamical, non-linear and generally partially observed processes may be difficult to estimate even if the structure of interactions is given.
Using the same approach as Sitz et al. proposed in another context, we derive non-linear state-space models from ODEs describing biological networks. In this framework, we apply Unscented Kalman Filtering (UKF) to the estimation of both parameters and hidden variables of non-linear state-space models. We instantiate the method on a transcriptional regulatory model based on Hill kinetics and a signaling pathway model based on mass action kinetics. We successfully use synthetic data and experimental data to test our approach.
This approach covers a large set of biological networks models and gives rise to simple and fast estimation algorithms. Moreover, the Bayesian tool used here directly provides uncertainty estimates on parameters and hidden states. Let us also emphasize that it can be coupled with structure inference methods used in Graphical Probabilistic Models.
Matlab code available on demand.
对基因调控网络、信号通路和代谢网络等生物网络进行统计推断,有助于构建细胞内复杂相互作用的图景。然而,生物系统被视为动态、非线性且通常部分可观测的过程,即便相互作用结构已知,其参数估计也可能颇具难度。
采用与西茨等人在另一种背景下所提出的相同方法,我们从描述生物网络的常微分方程(ODE)中推导出非线性状态空间模型。在此框架下,我们将无迹卡尔曼滤波(UKF)应用于非线性状态空间模型的参数和隐藏变量估计。我们在基于希尔动力学的转录调控模型以及基于质量作用动力学的信号通路模型上实例化了该方法。我们成功地使用合成数据和实验数据对我们的方法进行了测试。
此方法涵盖了大量生物网络模型,并产生了简单快速的估计算法。此外,这里使用的贝叶斯工具直接提供了参数和隐藏状态的不确定性估计。我们还要强调的是,它可以与图形概率模型中使用的结构推断方法相结合。
可按需提供Matlab代码。