Zhang Qintao, Subramanian Vivek
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 144MB Cory Hall, Berkeley, CA 94720-1770, United States.
Biosens Bioelectron. 2007 Jun 15;22(12):3182-7. doi: 10.1016/j.bios.2007.02.015. Epub 2007 Mar 4.
We demonstrate a novel DNA hybridization detection method with organic thin film transistors. DNA molecules are immobilized directly on the surface of organic semiconductors, producing an unambiguous doping-induced threshold voltage shift upon hybridization. With these shifts, single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) are differentiated successfully. This method is expected to result in higher sensitivity than the main competitive technology, ISFET-based sensors because of the direct exposure of DNA molecules to sensitive layers. Factors that influence sensor sensitivity have been analyzed and optimum conditions have been determined using statistically designed experiments. Under the optimum conditions, the maximum difference between saturation current ratios caused by ssDNA and dsDNA reaches as high as 70%. In order to make DNA detection fast, we also demonstrate rapid on-chip electrically enhanced hybridization using the TFTs. These technologies together will enable the realization of disposable, rapid-turnaround tools for field-deployable genomic diagnosis.
我们展示了一种利用有机薄膜晶体管的新型DNA杂交检测方法。DNA分子直接固定在有机半导体表面,杂交时会产生明确的掺杂诱导阈值电压偏移。通过这些偏移,成功区分了单链DNA(ssDNA)和双链DNA(dsDNA)。由于DNA分子直接暴露于敏感层,预计该方法比主要竞争技术——基于离子敏感场效应晶体管(ISFET)的传感器具有更高的灵敏度。分析了影响传感器灵敏度的因素,并通过统计设计实验确定了最佳条件。在最佳条件下,由ssDNA和dsDNA引起的饱和电流比的最大差异高达70%。为了实现快速DNA检测,我们还展示了利用薄膜晶体管(TFT)进行快速片上电增强杂交。这些技术共同将实现用于现场可部署基因组诊断的一次性、快速周转工具。