Suppr超能文献

用于检测准周期性和预测心血管风险的相整流信号平均法。

Phase-rectified signal averaging for the detection of quasi-periodicities and the prediction of cardiovascular risk.

作者信息

Kantelhardt Jan W, Bauer Axel, Schumann Aicko Y, Barthel Petra, Schneider Raphael, Malik Marek, Schmidt Georg

机构信息

Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany.

出版信息

Chaos. 2007 Mar;17(1):015112. doi: 10.1063/1.2430636.

Abstract

We present the phase-rectified signal averaging (PRSA) method as an efficient technique for the study of quasi-periodic oscillations in noisy, nonstationary signals. It allows the assessment of system dynamics despite phase resetting and noise and in relation with either increases or decreases of the considered signal. We employ the method to study the quasi-periodicities of the human heart rate based on long-term ECG recordings. The center deflection of the PRSA curve characterizes the average capacity of the heart to decelerate (or accelerate) the cardiac rhythm. It can be measured by a central wavelet coefficient which we denote as deceleration capacity (DC). We find that decreased DC is a more precise predictor of mortality in survivors of heart attack than left ventricular ejection fraction, the current "gold standard" risk predictor. In addition, we discuss the dependence of the DC parameter on age and on diabetes.

摘要

我们提出了相位整流信号平均(PRSA)方法,作为一种研究噪声非平稳信号中准周期振荡的有效技术。尽管存在相位重置和噪声,且与所考虑信号的增加或减少有关,该方法仍能评估系统动力学。我们采用该方法基于长期心电图记录研究人类心率的准周期性。PRSA曲线的中心偏转表征了心脏使心律减速(或加速)的平均能力。它可以通过一个中心小波系数来测量,我们将其称为减速能力(DC)。我们发现,与目前的“金标准”风险预测指标左心室射血分数相比,DC降低是心脏病发作幸存者死亡率更精确的预测指标。此外,我们还讨论了DC参数对年龄和糖尿病的依赖性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验