Suppr超能文献

作为基因调控网络模型的概率布尔网络与动态贝叶斯网络之间的关系。

Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks.

作者信息

Lähdesmäki Harri, Hautaniemi Sampsa, Shmulevich Ilya, Yli-Harja Olli

出版信息

Signal Processing. 2006 Apr;86(4):814-834. doi: 10.1016/j.sigpro.2005.06.008.

Abstract

A significant amount of attention has recently been focused on modeling of gene regulatory networks. Two frequently used large-scale modeling frameworks are Bayesian networks (BNs) and Boolean networks, the latter one being a special case of its recent stochastic extension, probabilistic Boolean networks (PBNs). PBN is a promising model class that generalizes the standard rule-based interactions of Boolean networks into the stochastic setting. Dynamic Bayesian networks (DBNs) is a general and versatile model class that is able to represent complex temporal stochastic processes and has also been proposed as a model for gene regulatory systems. In this paper, we concentrate on these two model classes and demonstrate that PBNs and a certain subclass of DBNs can represent the same joint probability distribution over their common variables. The major benefit of introducing the relationships between the models is that it opens up the possibility of applying the standard tools of DBNs to PBNs and vice versa. Hence, the standard learning tools of DBNs can be applied in the context of PBNs, and the inference methods give a natural way of handling the missing values in PBNs which are often present in gene expression measurements. Conversely, the tools for controlling the stationary behavior of the networks, tools for projecting networks onto sub-networks, and efficient learning schemes can be used for DBNs. In other words, the introduced relationships between the models extend the collection of analysis tools for both model classes.

摘要

最近,大量的注意力都集中在基因调控网络的建模上。两种常用的大规模建模框架是贝叶斯网络(BNs)和布尔网络,后者是其最近的随机扩展——概率布尔网络(PBNs)的一种特殊情况。PBN是一种很有前途的模型类别,它将布尔网络基于规则的标准交互推广到随机环境中。动态贝叶斯网络(DBNs)是一种通用且灵活的模型类别,能够表示复杂的时间随机过程,也被提议作为基因调控系统的模型。在本文中,我们专注于这两种模型类别,并证明PBNs和DBNs的某个子类可以在其共同变量上表示相同的联合概率分布。引入模型之间关系的主要好处在于,它开启了将DBNs的标准工具应用于PBNs的可能性,反之亦然。因此,DBNs的标准学习工具可以在PBNs的背景下应用,并且推理方法为处理PBNs中基因表达测量中经常出现的缺失值提供了一种自然的方式。相反,用于控制网络平稳行为的工具、将网络投影到子网的工具以及高效的学习方案可以用于DBNs。换句话说,模型之间引入的关系扩展了这两种模型类别的分析工具集。

相似文献

4
Intervention in context-sensitive probabilistic Boolean networks.上下文敏感概率布尔网络中的干预
Bioinformatics. 2005 Apr 1;21(7):1211-8. doi: 10.1093/bioinformatics/bti131. Epub 2004 Nov 5.
5
The complex fluctuations of probabilistic Boolean networks.概率布尔网络的复杂波动
Biosystems. 2013 Oct;114(1):78-84. doi: 10.1016/j.biosystems.2013.07.008. Epub 2013 Jul 16.
9
Implicit methods for probabilistic modeling of Gene Regulatory Networks.基因调控网络概率建模的隐式方法。
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4621-7. doi: 10.1109/IEMBS.2008.4650243.

引用本文的文献

5
Explainable Model Fusion for Customer Journey Mapping.用于客户旅程映射的可解释模型融合
Front Artif Intell. 2022 May 11;5:824197. doi: 10.3389/frai.2022.824197. eCollection 2022.
10
Statistical Analysis of Discrete Dynamical System Models for Biological Networks.生物网络离散动力系统模型的统计分析
Proc Int Joint Conf Bioinforma Syst Biol Intell Comput. 2009 Aug;2009:472-478. doi: 10.1109/IJCBS.2009.10. Epub 2009 Sep 25.

本文引用的文献

5
Gene networks inference using dynamic Bayesian networks.使用动态贝叶斯网络进行基因网络推断。
Bioinformatics. 2003 Oct;19 Suppl 2:ii138-48. doi: 10.1093/bioinformatics/btg1071.
6
The role of certain Post classes in Boolean network models of genetic networks.某些Post类在基因网络布尔网络模型中的作用。
Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10734-9. doi: 10.1073/pnas.1534782100. Epub 2003 Sep 8.
9
Transcriptional regulatory networks in Saccharomyces cerevisiae.酿酒酵母中的转录调控网络。
Science. 2002 Oct 25;298(5594):799-804. doi: 10.1126/science.1075090.
10
Gene perturbation and intervention in probabilistic Boolean networks.概率布尔网络中的基因扰动与干预
Bioinformatics. 2002 Oct;18(10):1319-31. doi: 10.1093/bioinformatics/18.10.1319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验