Suppr超能文献

展开与去混淆:使用METALICA从纵向多组学网络进行具有生物学意义的因果推断

Unfolding and De-confounding: Biologically meaningful causal inference from longitudinal multi-omic networks using METALICA.

作者信息

Ruiz-Perez Daniel, Gimon Isabella, Sazal Musfiqur, Mathee Kalai, Narasimhan Giri

机构信息

Bioinformatics Research Group (BioRG), Florida International University, Miami, FL 33199, USA.

Florida International University, Miami, FL 33199, USA.

出版信息

bioRxiv. 2023 Dec 13:2023.12.12.571384. doi: 10.1101/2023.12.12.571384.

Abstract

A key challenge in the analysis of microbiome data is the integration of multi-omic datasets and the discovery of interactions between microbial taxa, their expressed genes, and the metabolites they consume and/or produce. In an effort to improve the state-of-the-art in inferring biologically meaningful multi-omic interactions, we sought to address some of the most fundamental issues in causal inference from longitudinal multi-omics microbiome data sets. We developed METALICA, a suite of tools and techniques that can infer interactions between microbiome entities. METALICA introduces novel and techniques used to uncover multi-omic entities that are believed to act as confounders for some of the relationships that may be inferred using standard causal inferencing tools. The results lend support to predictions about biological models and processes by which microbial taxa interact with each other in a microbiome. The process helps to identify putative intermediaries (genes and/or metabolites) to explain the interactions between microbes; the process identifies putative common causes that may lead to spurious relationships to be inferred. METALICA was applied to the networks inferred by existing causal discovery and network inference algorithms applied to a multi-omics data set resulting from a longitudinal study of IBD microbiomes. The most significant unrollings and de-confoundings were manually validated using the existing literature and databases.

摘要

微生物组数据分析中的一个关键挑战是多组学数据集的整合,以及发现微生物分类群、它们表达的基因以及它们消耗和/或产生的代谢物之间的相互作用。为了改进推断具有生物学意义的多组学相互作用的现有技术水平,我们试图解决纵向多组学微生物组数据集中因果推断的一些最基本问题。我们开发了METALICA,这是一套能够推断微生物组实体之间相互作用的工具和技术。METALICA引入了新颖的方法和技术,用于发现多组学实体,这些实体被认为是使用标准因果推断工具可能推断出的某些关系的混杂因素。研究结果为关于微生物分类群在微生物组中相互作用的生物学模型和过程的预测提供了支持。该过程有助于识别假定的中介物(基因和/或代谢物)来解释微生物之间的相互作用;该过程识别可能导致推断出虚假关系的假定共同原因。METALICA应用于现有因果发现和网络推断算法对炎症性肠病微生物组纵向研究产生的多组学数据集推断出的网络。使用现有文献和数据库对手动验证了最显著的展开和去混杂情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9552/10760167/69d6b024a7e2/nihpp-2023.12.12.571384v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验