Suppr超能文献

与绿色荧光蛋白(GFP)融合的Rnq1片段介导的[PIN+]朊病毒传播。

Propagation of the [PIN+] prion by fragments of Rnq1 fused to GFP.

作者信息

Vitrenko Yakov A, Pavon Mariana E, Stone Stephen I, Liebman Susan W

机构信息

Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland M/C 567, Chicago, IL 60607, USA.

出版信息

Curr Genet. 2007 May;51(5):309-19. doi: 10.1007/s00294-007-0127-0. Epub 2007 Apr 6.

Abstract

Prions are viewed as enigmatic infectious entities whose genetic properties are enciphered solely in an array of self-propagating protein aggregate conformations. Rnq1, a yeast protein with yet unknown function, forms a prion named [PIN+] for its ability to facilitate the de novo induction of another prion, [PSI+]. Here we investigate a set of RNQ1 truncations that were designed to cover major Rnq1 sequence elements similar to those important for the propagation of other yeast prions: a region rich in asparagines and glutamines and several types of oligopeptide repeats. Proteins encoded by these RNQ1 truncations were tested for their ability to (a) join (decorate) pre-existing [PIN+] aggregates made of wild-type Rnq1 and (b) maintain the heritable aggregated state in the absence of wild-type RNQ1. While the possible involvement of particular sequence elements in the propagation of [PIN+] is discussed, the major result is that the efficiency of transmission of [PIN+] from wild-type Rnq1 to a fragment decreased with the fragment's length.

摘要

朊病毒被视为神秘的传染性实体,其遗传特性仅编码于一系列自我传播的蛋白质聚集体构象中。Rnq1是一种功能未知的酵母蛋白,因其能够促进另一种朊病毒[PSI+]的从头诱导而形成一种名为[PIN+]的朊病毒。在这里,我们研究了一组Rnq1截短体,其设计目的是覆盖与其他酵母朊病毒传播重要的主要Rnq1序列元件:富含天冬酰胺和谷氨酰胺的区域以及几种类型的寡肽重复序列。测试了由这些Rnq1截短体编码的蛋白质的以下能力:(a) 加入(修饰)由野生型Rnq1构成的预先存在的[PIN+]聚集体,以及 (b) 在没有野生型Rnq1的情况下维持可遗传的聚集状态。虽然讨论了特定序列元件在[PIN+]传播中的可能作用,但主要结果是[PIN+]从野生型Rnq1到片段的传播效率随片段长度的增加而降低。

相似文献

1
Propagation of the [PIN+] prion by fragments of Rnq1 fused to GFP.
Curr Genet. 2007 May;51(5):309-19. doi: 10.1007/s00294-007-0127-0. Epub 2007 Apr 6.
2
A regulatory role of the Rnq1 nonprion domain for prion propagation and polyglutamine aggregates.
Mol Cell Biol. 2008 May;28(10):3313-23. doi: 10.1128/MCB.01900-07. Epub 2008 Mar 10.
3
[PSI(+)] aggregate enlargement in rnq1 nonprion domain mutants, leading to a loss of prion in yeast.
Genes Cells. 2011 May;16(5):576-89. doi: 10.1111/j.1365-2443.2011.01511.x. Epub 2011 Apr 1.
4
5
Selfish prion of Rnq1 mutant in yeast.
Genes Cells. 2009 May;14(5):659-68. doi: 10.1111/j.1365-2443.2009.01297.x. Epub 2009 Apr 15.
6
Distinct type of transmission barrier revealed by study of multiple prion determinants of Rnq1.
PLoS Genet. 2010 Jan 22;6(1):e1000824. doi: 10.1371/journal.pgen.1000824.
7
Heterologous aggregates promote de novo prion appearance via more than one mechanism.
PLoS Genet. 2015 Jan 8;11(1):e1004814. doi: 10.1371/journal.pgen.1004814. eCollection 2015 Jan.
8
Prions affect the appearance of other prions: the story of [PIN(+)].
Cell. 2001 Jul 27;106(2):171-82. doi: 10.1016/s0092-8674(01)00427-5.
9
Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+].
Genetics. 2014 Jun;197(2):685-700. doi: 10.1534/genetics.114.163402. Epub 2014 Apr 11.

引用本文的文献

1
Intrinsically Disordered Compositional Bias in Proteins: Sequence Traits, Region Clustering, and Generation of Hypothetical Functional Associations.
Bioinform Biol Insights. 2024 Oct 15;18:11779322241287485. doi: 10.1177/11779322241287485. eCollection 2024.
2
Mapping of Prion Structures in the Yeast Rnq1.
Int J Mol Sci. 2024 Mar 17;25(6):3397. doi: 10.3390/ijms25063397.
3
[PRION] States Are Associated with Specific Histone H3 Post-Translational Modification Changes.
Pathogens. 2022 Nov 29;11(12):1436. doi: 10.3390/pathogens11121436.
4
Hsp40/JDP Requirements for the Propagation of Synthetic Yeast Prions.
Viruses. 2022 Sep 30;14(10):2160. doi: 10.3390/v14102160.
5
The non-prion SUP35 preexists in large chaperone-containing molecular complexes.
Proteins. 2022 Mar;90(3):869-880. doi: 10.1002/prot.26282. Epub 2021 Dec 2.
6
The actin cytoskeletal network plays a role in yeast prion transmission and contributes to prion stability.
Mol Microbiol. 2020 Sep;114(3):480-494. doi: 10.1111/mmi.14528. Epub 2020 Jun 8.
7
Distinct amino acid compositional requirements for formation and maintenance of the [PSI⁺] prion in yeast.
Mol Cell Biol. 2015 Mar;35(5):899-911. doi: 10.1128/MCB.01020-14. Epub 2014 Dec 29.
8
Effect of domestication on the spread of the [PIN+] prion in Saccharomyces cerevisiae.
Genetics. 2014 Jul;197(3):1007-24. doi: 10.1534/genetics.114.165670. Epub 2014 May 8.
9
Extensive diversity of prion strains is defined by differential chaperone interactions and distinct amyloidogenic regions.
PLoS Genet. 2014 May 8;10(5):e1004337. doi: 10.1371/journal.pgen.1004337. eCollection 2014 May.
10
Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+].
Genetics. 2014 Jun;197(2):685-700. doi: 10.1534/genetics.114.163402. Epub 2014 Apr 11.

本文引用的文献

1
Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure.
Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19754-9. doi: 10.1073/pnas.0609638103. Epub 2006 Dec 14.
2
Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM.
J Biol Chem. 2007 Jan 19;282(3):1779-87. doi: 10.1074/jbc.M609269200. Epub 2006 Nov 22.
3
Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities.
Mol Cell. 2006 Aug 4;23(3):425-38. doi: 10.1016/j.molcel.2006.05.042.
4
Protein misfolding, functional amyloid, and human disease.
Annu Rev Biochem. 2006;75:333-66. doi: 10.1146/annurev.biochem.75.101304.123901.
5
Structural differences between TSEs strains investigated by FT-IR spectroscopy.
Biochim Biophys Acta. 2006 Jul;1760(7):1138-49. doi: 10.1016/j.bbagen.2006.02.018. Epub 2006 Mar 27.
6
Prion domains: sequences, structures and interactions.
Nat Cell Biol. 2005 Nov;7(11):1039-44. doi: 10.1038/ncb1105-1039.
7
Structure and orientation of peptide inhibitors bound to beta-amyloid fibrils.
J Mol Biol. 2005 Dec 9;354(4):760-76. doi: 10.1016/j.jmb.2005.09.055. Epub 2005 Oct 5.
8
Structure of the prion Ure2p in protein fibrils assembled in vitro.
J Biol Chem. 2005 Nov 4;280(44):37149-58. doi: 10.1074/jbc.M506917200. Epub 2005 Aug 30.
9
Primary sequence independence for prion formation.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12825-30. doi: 10.1073/pnas.0506136102. Epub 2005 Aug 25.
10
Structure of the cross-beta spine of amyloid-like fibrils.
Nature. 2005 Jun 9;435(7043):773-8. doi: 10.1038/nature03680.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验