Vivó-Truyols G, Torres-Lapasió J R, García-Alvarez-Coque M C, Schoenmakers P J
Polymer-Analysis Group, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
J Chromatogr A. 2007 Jul 27;1158(1-2):258-72. doi: 10.1016/j.chroma.2007.03.005. Epub 2007 Mar 12.
A method to apply multivariate curve-resolution unattendedly is presented. The algorithm is suitable to perform deconvolution of two-way data (e.g. retrieving the individual elution profiles and spectra of co-eluting compounds from signals obtained from a chromatograph equipped with multiple-channel detection: LC-DAD or GC-MS). The method is especially adequate to achieve the advantages of deconvolution approaches when huge amounts of data are present and manual application of multivariate techniques is too time-consuming. The philosophy of the algorithm is to mimic the reactions of an expert user when applying the orthogonal projection approach--multivariate curve-resolution techniques. Basically, the method establishes a way to check the number of significant components in the data matrix. The performance of the method was superior to the Malinowski F-test. The algorithm was tested with HPLC-DAD signals.
提出了一种无人值守应用多元曲线分辨的方法。该算法适用于对双向数据进行反卷积(例如,从配备多通道检测的色谱仪(液相色谱 - 二极管阵列检测器或气相色谱 - 质谱联用仪)获得的信号中检索共洗脱化合物的各个洗脱曲线和光谱)。当存在大量数据且手动应用多元技术过于耗时的情况下,该方法特别适合实现反卷积方法的优势。该算法的原理是模仿专家用户应用正交投影方法——多元曲线分辨技术时的反应。基本上,该方法建立了一种检查数据矩阵中显著成分数量的方法。该方法的性能优于马林诺夫斯基F检验。该算法用高效液相色谱 - 二极管阵列检测器信号进行了测试。