Authier F, Desbuquois B
INSERM Unité 30, Hôpital Necker Enfants-Malades, Paris, France.
Biochem J. 1991 Nov 15;280 ( Pt 1)(Pt 1):211-8. doi: 10.1042/bj2800211.
Endosomes have recently been identified as one major site of glucagon degradation in intact rat liver. In this study, a cell-free system has been used to assess the role of ATP-dependent acidification in endosomal glucagon degradation and identify the glucagon products generated. Percoll gradient fractionation of Golgi-endosomal fractions prepared 10-30 min after injection of [125I]iodoglucagon showed a time-dependent shift of the radioactivity towards high densities. Regardless of time, the radioactivity was less precipitable by trichloroacetic acid (Cl3Ac) at high densities than at low densities. Chloroquine treatment slightly increased the density shift of the radioactivity and decreased its Cl3Ac-precipitability throughout the gradient. Incubation of endosomal fractions containing [125I]iodoglucagon in 0.15 M-KCl at 30 degrees C resulted in a time- and pH-dependent generation of Cl3Ac-soluble radioactivity, with a maximum at pH 4 (t1/2, 7 min). At pH 5, 1,10-phenanthroline, bacitracin and p-chloromercuribenzoic acid partially inhibited [125I]iodoglucagon degradation. At pH 6-7, ATP stimulated [125I]iodoglucagon degradation by 5-10-fold and caused endosomal acidification as judged from Acridine Orange uptake. The effects of ATP were inhibited by chloroquine, monensin, N-ethylmaleimide and dansylcadaverine. Poly(ethylene glycol) (PEG) precipitation of the radioactivity associated with endosomes showed that lowering the pH below 5.5 caused dissociation of the glucagon-receptor complex, and that, regardless of incubation conditions, all degraded [125I]iodoglucagon diffused extraluminally. On h.p.l.c., at least three products less hydrophobic than [125I]iodoglucagon were identified in incubation mixtures along with monoiodotyrosine. Radiosequence analysis of the products revealed one major cleavage located C-terminally to Tyr-13 and two minor cleavages affecting Thr-5-Phe-6 and Phe-6-Thr-7 bonds. It is concluded that glucagon degradation in liver endosomes is functionally linked to ATP-dependent endosomal acidification and involves several cleavages in the glucagon sequence.
内体最近被确定为完整大鼠肝脏中胰高血糖素降解的一个主要部位。在本研究中,已使用无细胞系统来评估ATP依赖性酸化在内体胰高血糖素降解中的作用,并鉴定所产生的胰高血糖素产物。注射[125I]碘胰高血糖素后10 - 30分钟制备的高尔基体-内体部分的Percoll梯度分级分离显示放射性随时间向高密度转移。无论时间如何,高密度下放射性被三氯乙酸(Cl3Ac)沉淀的程度低于低密度下。氯喹处理略微增加了放射性的密度转移,并在整个梯度中降低了其Cl3Ac沉淀性。在30℃下将含有[125I]碘胰高血糖素的内体部分在0.15 M - KCl中孵育导致Cl3Ac可溶性放射性随时间和pH的依赖性产生,在pH 4时达到最大值(t1/2,7分钟)。在pH 5时,1,10 - 菲咯啉、杆菌肽和对氯汞苯甲酸部分抑制[125I]碘胰高血糖素降解。在pH 6 - 7时,ATP刺激[125I]碘胰高血糖素降解5 - 10倍,并根据吖啶橙摄取判断导致内体酸化。ATP的作用被氯喹、莫能菌素、N - 乙基马来酰亚胺和丹磺酰尸胺抑制。与内体相关的放射性的聚乙二醇(PEG)沉淀表明,将pH降低至5.5以下会导致胰高血糖素 - 受体复合物解离,并且无论孵育条件如何,所有降解的[125I]碘胰高血糖素都会扩散到腔外。在高效液相色谱上,在孵育混合物中鉴定出至少三种比[125I]碘胰高血糖素疏水性更低的产物以及单碘酪氨酸。产物的放射性序列分析显示一个主要切割位于Tyr - 13的C末端,还有两个较小的切割影响Thr - 5 - Phe - 6和Phe - 6 - Thr - 7键。结论是肝脏内体中的胰高血糖素降解在功能上与ATP依赖性内体酸化相关,并涉及胰高血糖素序列中的几个切割。