Suppr超能文献

Degradation of intraendosomal insulin by insulin-degrading enzyme without acidification.

作者信息

Hamel F G, Mahoney M J, Duckworth W C

机构信息

Department of Internal Medicine, University of Nebraska Medical Center, Omaha 68198-3020.

出版信息

Diabetes. 1991 Apr;40(4):436-43. doi: 10.2337/diab.40.4.436.

Abstract

The nature of insulin degradation within endosomes was studied in vitro. Radiolabeled insulin was perfused into rat liver via the portal vein, and insulin-containing endosomes were prepared by differential centrifugation. The endosomes were incubated in various buffers, and hormone degradation was monitored by Sephadex G-50 chromatography and high-performance liquid chromatography (HPLC). Endosomes incubated in simple imidazole or HEPES (pH 7.4) buffers rapidly degraded insulin to intermediate- and then to low-molecular-weight products that were lost from the vesicles. HPLC analysis of insulin-sized material showed the products to be the same as those produced by intact cells. The endosomes did not acidify in these buffers (as assessed by the acridine orange method), and ATP had no effects. When the endosomes were incubated in a chloride-containing buffer, degradation was greatly inhibited, and acidification did not occur. Both insulin degradation and acidification were activated when Mg-ATP was added to this buffer system. HPLC analysis of the products generated in this system revealed not only typical cellular products but additional less hydrophobic products. Western-blot analysis of endosomal protein with anti-insulin-degrading enzyme antibody showed this enzyme to be present. In conclusion, isolated endosomes rapidly and completely degrade insulin through products that are typical of cellular degradation without requiring acidification. Chloride-containing buffers inhibit endosomal degradation, which is reversed by Mg-ATP, but this system does not mimic cellular degradation. At least one of the enzymes responsible for insulin degradation is insulin-degrading enzyme.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验