Wang Junbai
Department of Biological Sciences, Columbia University, 1212, Amsterdam Avenue, MC 2442, New York, NY 10027, USA.
J Biomed Inform. 2007 Dec;40(6):707-25. doi: 10.1016/j.jbi.2007.02.003. Epub 2007 Mar 3.
By integrating heterogeneous functional genomic datasets, we have developed a new framework for detecting combinatorial control of gene expression, which includes estimating transcription factor activities using a singular value decomposition method and reducing high-dimensional input gene space by considering genomic properties of gene clusters. The prediction of cooperative gene regulation is accomplished by either Gaussian Graphical Models or Pairwise Mixed Graphical Models. The proposed framework was tested on yeast cell cycle datasets: (1) 54 known yeast cell cycle genes with 9 cell cycle regulators and (2) 676 putative yeast cell cycle genes with 9 cell cycle regulators. The new framework gave promising results on inferring TF-TF and TF-gene interactions. It also revealed several interesting mechanisms such as negatively correlated protein-protein interactions and low affinity protein-DNA interactions that may be important during the yeast cell cycle. The new framework may easily be extended to study other higher eukaryotes.
通过整合异质功能基因组数据集,我们开发了一种用于检测基因表达组合调控的新框架,该框架包括使用奇异值分解方法估计转录因子活性,以及通过考虑基因簇的基因组特性来减少高维输入基因空间。协同基因调控的预测通过高斯图形模型或成对混合图形模型来完成。所提出的框架在酵母细胞周期数据集上进行了测试:(1)54个已知的酵母细胞周期基因和9个细胞周期调节因子,以及(2)676个推定的酵母细胞周期基因和9个细胞周期调节因子。新框架在推断转录因子-转录因子和转录因子-基因相互作用方面给出了有前景的结果。它还揭示了几种有趣的机制,如负相关的蛋白质-蛋白质相互作用和低亲和力的蛋白质-DNA相互作用,这些在酵母细胞周期中可能很重要。新框架可以很容易地扩展到研究其他高等真核生物。