David Bernard, Boldo Primius
Université de Savoie, ESIGEC, LCME, 73 376 Le Bourget du Lac, Cedex, France.
Ultrason Sonochem. 2008 Jan;15(1):78-88. doi: 10.1016/j.ultsonch.2007.02.001. Epub 2007 Feb 23.
The calculation of the equilibrium constants K of the sonolysis reactions of CO2 into CO and O atom, the recombination of O atoms into O2 and the formation of H2O starting with H and O atoms, has been studied by means of statistical thermodynamic. The constants have been calculated at 300 kHz versus the pressure and the temperature according to the extreme conditions expected in a cavitation bubble, e.g. in the range from ambient temperature to 15200 K and from ambient pressure to 300 bar. The decomposition of CO2 appears to be thermodynamically favored at 15200 K and 1 bar with a constant K1=1.52 x 10(6), whereas the formation of O2 is not expected to occur (K2=1.8 x10(-8) maximum value at 15200 K and 300 bar) in comparison to the formation of water (K3=3.4 x 10(47) at 298 K and 300 bar). The most thermodynamic favorable location of each reactions is then proposed, the surrounding shell region for the thermic decomposition of CO2 and the wall of the cavitation bubble for the formation of water. Starting from a work of Henglein on the sonolysis of CO2 in water at 300 kHz, the experimental amount of CO formed (7.2 x 10(20)molecules L(-1)) is compared to the theoretical CO amount (1.4 x 10(27)molecules L(-1)) which can be produced by the sonolysis of the same starting amount CO2. With the help of the literature data, the number of cavitation bubble has been evaluated to 6.2 x 10(15) bubbles L(-1) at 300 kHz, in 15 min. This means that about 1 bubble on 1900000 is efficient for undergoing the sonolysis of CO2.
利用统计热力学研究了二氧化碳声解为一氧化碳和氧原子、氧原子重组为氧气以及由氢原子和氧原子生成水的反应平衡常数K的计算。根据空化泡中预期的极端条件,例如在从环境温度到15200K以及从环境压力到300巴的范围内,计算了300kHz时的平衡常数与压力和温度的关系。在15200K和1巴条件下,二氧化碳的分解在热力学上是有利的,平衡常数K1 = 1.52×10⁶,而与水的生成(在298K和300巴条件下K3 = 3.4×10⁴⁷)相比,预计不会发生氧气的生成(在15200K和300巴条件下K2最大值为1.8×10⁻⁸)。然后提出了每个反应在热力学上最有利的位置,即二氧化碳热分解的周围壳层区域和水生成的空化泡壁。从亨莱因关于300kHz水中二氧化碳声解的工作出发,将实验生成的一氧化碳量(7.2×10²⁰个分子·L⁻¹)与相同起始量二氧化碳声解理论上可产生的一氧化碳量(1.4×10²⁷个分子·L⁻¹)进行了比较。借助文献数据,在300kHz下15分钟内空化泡的数量评估为6.2×10¹⁵个泡·L⁻¹。这意味着每1900000个泡中约有1个泡能有效地进行二氧化碳的声解。