Suppr超能文献

关于Fe(III)cydta的质子解离平衡以及过氧化氢活化的详细光谱、热力学和动力学研究。

Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.

作者信息

Brausam Ariane, Maigut Joachim, Meier Roland, Szilágyi Petra A, Buschmann Hans-Jürgen, Massa Werner, Homonnay Zoltán, van Eldik Rudi

机构信息

Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany.

出版信息

Inorg Chem. 2009 Aug 17;48(16):7864-84. doi: 10.1021/ic900834z.

Abstract

The crystal structure of the as-yet-unknown salt K[Fe(III)(cydta)(H(2)O)].3H(2)O, where cydta = (+/-)-trans-1,2-cyclohexanediaminetetraacetate, has been resolved: orthorhombic space group Pbca with R1 = 0.0309, wR2 = 0.0700, and GOF = 0.99. There are two independent Fe(III)(cydta)(H(2)O) anions in the asymmetric unit, and the ligand is (R,R)-cydta in both cases. The coordination polyhedron is a seven-coordinate capped trigonal prism where the quadrilateral face formed by the four ligand donor oxygen atoms is capped by the coordinated water molecule. The speciation of Fe(III)(cydta)(H(2)O) in water was studied in detail by a combination of techniques: (i) Measurements of the pH dependence of the Fe(III/II)cydta redox potentials by cyclic voltammetry enabled the estimation of the stability constants (0.1 M KNO(3), 25 degrees C) of Fe(III)(cydta)(H(2)O) (log beta(III)(110) = 29.05 +/- 0.01) and Fe(II)(cydta)(H(2)O) (log beta(II)(110) = 17.96 +/- 0.01) as well as pK(III)(a1OH) = 9.57 and pK(II)(a1H) = 2.69. The formation enthalpy of Fe(III)(cydta)(H(2)O) (DeltaH degrees = -23 +/- 1 kJ mol(-1)) was measured by direct calorimetry and is compared to the corresponding value for Fe(III)(edta)(H(2)O) (DeltaH degrees = -31 +/- 1 kJ mol(-1)). (ii) pH-dependent spectrophotometric titrations of Fe(III)cydta lead to pK(III)(a1OH) = 9.54 +/- 0.01 for deprotonation of the coordinated water and a dimerization constant of log K(d) = 1.07. These data are compared with those of Fe(III)pdta (pdta = 1,2-propanediaminetetraacetate; pK(III)(a1OH) = 7.70 +/- 0.01, log K(d) = 2.28) and Fe(III)edta (pK(III)(a1OH) = 7.52 +/- 0.01, log K(d) = 2.64). Temperature- and pressure-dependent (17)O NMR measurements lead to the following kinetic parameters for the water-exchange reaction at Fe(III)(cydta)(H(2)O) (at 298 K): k(ex) = (1.7 +/- 0.2) x 10(7) s(-1), DeltaH(++) = 40.2 +/- 1.3 kJ mol(-1), DeltaS(++) = +28.4 +/- 4.7 J mol(-1) K(-1), and DeltaV(++) = +2.3 +/- 0.1 cm(3) mol(-1). A detailed kinetic study of the effect of the buffer, temperature, and pressure on the reaction of hydrogen peroxide with Fe(III)(cydta)(H(2)O) was performed using stopped-flow techniques. The reaction was found to consist of two steps and resulted in the formation of a purple Fe(III) side-on-bound peroxo complex Fe(III)(cydta)(eta(2)-O(2)). The peroxo complex and its degradation products were characterized using Mossbauer spectroscopy. Formation of the purple peroxo complex is only observable above a pH of 9.5. Both reaction steps are affected by specific and general acid catalysis. Two different buffer systems were used to clarify the role of general acid catalysis in these reactions. Mechanistic descriptions and a comparison between the edta and cydta systems are presented. The first reaction step reveals an element of reversibility, which is evident over the whole studied pH range. The positive volume of activation for the forward reaction and the positive entropy of activation for the backward reaction suggest a dissociative interchange mechanism for the reversible end-on binding of hydrogen peroxide to Fe(III)(cydta)(H(2)O). Deprotonation of the end-on-bound hydroperoxo complex leads to the formation of a seven-coordinate side-on-bound peroxo complex Fe(III)(cydta)(eta(2)-O(2)), where one carboxylate arm is detached. Fe(III)(cydta)(eta(2)-O(2)) can be reached by two different pathways, of which one is catalyzed by a base and the other by deprotonated hydrogen peroxide. For both pathways, a small negative volume and entropy of activation was observed, suggesting an associative interchange mechanism for the ring-closure step to the side-on-bound peroxo complex. For the second reaction step, no element of reversibility was found.

摘要

尚未知晓的盐K[Fe(III)(cydta)(H₂O)].3H₂O(其中cydta = (+/-)-反式-1,2-环己二胺四乙酸)的晶体结构已解析:正交空间群Pbca,R1 = 0.0309,wR2 = 0.0700,拟合优度GOF = 0.99。不对称单元中有两个独立的[Fe(III)(cydta)(H₂O)]⁻阴离子,且两种情况下配体均为(R,R)-cydta。配位多面体是一个七配位的盖帽三角棱柱,由四个配体供体氧原子形成的四边形面被配位水分子盖帽。通过多种技术相结合的方式详细研究了[Fe(III)(cydta)(H₂O)]⁻在水中的物种形成:(i) 通过循环伏安法测量Fe(III/II)cydta氧化还原电位对pH的依赖性,从而能够估算[Fe(III)(cydta)(H₂O)]⁻(logβ(III)(110) = 29.05 ± 0.01)和[Fe(II)(cydta)(H₂O)]²⁻(logβ(II)(110) = 17.96 ± 0.01)的稳定常数以及pK(III)(a1OH) = 9.57和pK(II)(a1H) = 2.69。通过直接量热法测量了[Fe(III)(cydta)(H₂O)]⁻的生成焓(ΔH° = -23 ± 1 kJ mol⁻¹),并与[Fe(III)(edta)(H₂O)]⁻的相应值(ΔH° = -31 ± 1 kJ mol⁻¹)进行比较。(ii) Fe(III)cydta的pH依赖性分光光度滴定得出配位水去质子化的pK(III)(a1OH) = 9.54 ± 0.01以及二聚常数log K(d) = 1.07。这些数据与Fe(III)pdta(pdta = 1,2-丙二胺四乙酸;pK(III)(a1OH) = 7.70 ± 0.01,log K(d) = 2.28)和Fe(III)edta(pK(III)(a1OH) = 7.52 ± 0.01,log K(d) = 2.64)的数据进行比较。温度和压力依赖性¹⁷O NMR测量得出[Fe(III)(cydta)(H₂O)]⁻水交换反应在298 K时的以下动力学参数:k(ex) = (1.7 ± 0.2) × 10⁷ s⁻¹,ΔH⁺⁺ = 40.2 ± 1.3 kJ mol⁻¹,ΔS⁺⁺ = +28.4 ± 4.7 J mol⁻¹ K⁻¹,以及ΔV⁺⁺ = +2.3 ± 0.1 cm³ mol⁻¹。使用停流技术对缓冲剂、温度和压力对过氧化氢与[Fe(III)(cydta)(H₂O)]⁻反应的影响进行了详细的动力学研究。发现该反应由两步组成,并生成紫色的Fe(III)侧基配位过氧络合物[Fe(III)(cydta)(η²-O₂)]³⁻。使用穆斯堡尔光谱对过氧络合物及其降解产物进行了表征。紫色过氧络合物仅在pH高于9.5时才可观察到。两个反应步骤均受特定酸催化和一般酸催化的影响。使用两种不同的缓冲系统来阐明一般酸催化在这些反应中的作用。给出了机理描述以及edta和cydta系统之间的比较。第一个反应步骤显示出可逆性,这在整个研究的pH范围内都很明显。正向反应的正活化体积和逆向反应的正活化熵表明过氧化氢与[Fe(III)(cydta)(H₂O)]⁻的可逆端基结合存在解离交换机制。端基配位的氢过氧络合物去质子化导致形成七配位的侧基配位过氧络合物[Fe(III)(cydta)(η²-O₂)]³⁻,其中一个羧酸酯臂脱离。[Fe(III)(cydta)(η²-O₂)]³⁻可通过两种不同途径形成,其中一种由碱催化,另一种由去质子化的过氧化氢催化。对于这两种途径,均观察到小的负活化体积和熵,表明形成侧基配位过氧络合物的闭环步骤存在缔合交换机制。对于第二个反应步骤,未发现可逆性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验