Iwashina Tsukasa, Githiri Stephen M, Benitez Eduardo R, Takemura Tomoko, Kitajima Junichi, Takahashi Ryoji
Tsukuba Botanical Garden, National Science Museum, Tsukuba, Ibaraki 305-0005, Japan.
J Hered. 2007 May-Jun;98(3):250-7. doi: 10.1093/jhered/esm012. Epub 2007 Apr 9.
W1, W3, W4, and Wm genes control flower color, whereas T and Td genes control pubescence color in soybean. W1, W3, Wm, and T are presumed to encode flavonoid 3'5'-hydroxylase (EC 1.14.13.88), dihydroflavonol 4-reductase (EC 1.1.1.219), flavonol synthase (EC 1.14.11.23), and flavonoid 3'-hydroxylase (EC 1.14.13.21), respectively. The objective of this study was to determine the structure of the primary anthocyanin, flavonol, and dihydroflavonol in flower petals. Primary component of anthocyanin in purple flower cultivars Clark (W1W1 w3w3 W4W4 WmWm TT TdTd) and Harosoy (W1W1 w3w3 W4W4 WmWm tt TdTd) was malvidin 3,5-di-O-glucoside with delphinidin 3,5-di-O-glucoside as a minor compound. Primary flavonol and dihydroflavonol were kaempferol 3-O-gentiobioside and aromadendrin 3-O-glucoside, respectively. Quantitative analysis of near-isogenic lines (NILs) for flower or pubescence color genes, Clark-w1 (white flower), Clark-w4 (near-white flower), Clark-W3w4 (dilute purple flower), Clark-t (gray pubescence), Clark-td (near-gray pubescence), Harosoy-wm (magenta flower), and Harosoy-T (tawny pubescence) was carried out. No anthocyanins were detected in Clark-w1 and Clark-w4, whereas a trace amount was detected in Clark-W3w4. Amount of flavonols and dihydroflavonol in NILs with w1 or w4 were largely similar to the NILs with purple flower suggesting that W1 and W4 affect only anthocyanin biosynthesis. Amount of flavonol glycosides was substantially reduced and dihydroflavonol was increased in Harosoy-wm suggesting that Wm is responsible for the production of flavonol from dihydroflavonol. The recessive wm allele reduces flavonol amount and inhibits co-pigmentation between anthocyanins and flavonols resulting in less bluer (magenta) flower color. Pubescence color genes, T or Td, had no apparent effect on flavonoid biosynthesis in flower petals.
W1、W3、W4和Wm基因控制大豆花色,而T和Td基因控制大豆茸毛色。推测W1、W3、Wm和T分别编码类黄酮3'5'-羟化酶(EC 1.14.13.88)、二氢黄酮醇4-还原酶(EC 1.1.1.219)、黄酮醇合酶(EC 1.14.11.23)和类黄酮3'-羟化酶(EC 1.14.13.21)。本研究的目的是确定花瓣中主要花青素、黄酮醇和二氢黄酮醇的结构。紫色花品种Clark(W1W1 w3w3 W4W4 WmWm TT TdTd)和Harosoy(W1W1 w3w3 W4W4 WmWm tt TdTd)中花青素的主要成分是锦葵色素3,5-二-O-葡萄糖苷,少量成分是飞燕草色素3,5-二-O-葡萄糖苷。主要的黄酮醇和二氢黄酮醇分别是山奈酚3-O-龙胆二糖苷和香豆素3-O-葡萄糖苷。对花色或茸毛色基因的近等基因系(NILs)进行了定量分析,包括Clark-w1(白花)、Clark-w4(近白花)、Clark-W3w4(浅紫色花)、Clark-t(灰色茸毛)、Clark-td(近灰色茸毛)、Harosoy-wm(洋红色花)和Harosoy-T(黄褐色茸毛)。在Clark-w1和Clark-w4中未检测到花青素,而在Clark-W3w4中检测到微量花青素。w1或w4的NILs中黄酮醇和二氢黄酮醇的含量与紫色花的NILs基本相似,这表明W1和W4仅影响花青素的生物合成。Harosoy-wm中黄酮醇糖苷的含量大幅降低,二氢黄酮醇含量增加,这表明Wm负责从二氢黄酮醇生成黄酮醇。隐性wm等位基因减少了黄酮醇的含量,并抑制了花青素与黄酮醇之间的共色素沉着,导致花色更偏红(洋红色)。茸毛色基因T或Td对花瓣中类黄酮生物合成没有明显影响。