Suppr超能文献

团藻胚胎模式形成的不对称分裂的遗传和细胞学控制。

Genetic and cytological control of the asymmetric divisions that pattern the Volvox embryo.

作者信息

Kirk D L, Kaufman M R, Keeling R M, Stamer K A

机构信息

Department of Biology, Washington University, St Louis, MO 63130.

出版信息

Dev Suppl. 1991;1:67-82.

PMID:1742501
Abstract

The highly regular pattern in which approximately 2000 small somatic cells and 16 large reproductive cells (or 'gonidia') are arranged in a typical asexual adult of Volvox carteri can be traced back to a stereotyped program of embryonic cleavage divisions. After five symmetrical divisions have produced 32 cells of equal size, the anterior 16 cells cleave asymmetrically, to produce one small somatic cell initial and one larger gonidial initial each. The gonidial initials then cease dividing before the somatic cell initials do. The significance of the visibly asymmetric divisions is underscored by genetic and experimental evidence that differences in size--rather than differences in cytoplasmic quality--are causally important in activating the programs that cause small cells to become mortal somatic cells and large cells to differentiate as reproductive cells. A number of loci, including at least five mul ('multiple gonidia') loci, appear to be responsible for determining where and when asymmetric divisions will occur, since mutations at these loci result in modified temporal and/or spatial patterns of asymmetric division in one or more portions of the life cycle. But the capacity to divide asymmetrically at all appears to require a function encoded by the gls (gonidialess) locus, since gls mutants fail to execute any asymmetric divisions. Second-site suppressors of gls that have been identified may encode other functions required for asymmetric division. Cytological and immunocytochemical studies of dividing embryos are being undertaken in an attempt to elucidate the mechanisms by which cell-division planes are established--and shifted--under the influence of such pattern-specifying genes. Studies to date clearly indicate a central role for the basal body apparatus, and particularly its microtubular rootlets, in establishing the orientation of both the mitotic spindle and the cleavage furrow; but it remains to be determined how behavior of the division apparatus becomes modified during asymmetric division.

摘要

在典型的无性成年卡特氏团藻中,大约2000个小体细胞和16个大生殖细胞(或“类生殖细胞”)以高度规则的模式排列,这种模式可追溯到胚胎卵裂分裂的固定程序。经过五次对称分裂产生32个大小相等的细胞后,前16个细胞进行不对称分裂,每个产生一个小体细胞初始细胞和一个较大的类生殖细胞初始细胞。类生殖细胞初始细胞随后在体细胞初始细胞之前停止分裂。遗传和实验证据强调了明显不对称分裂的重要性,即大小差异而非细胞质质量差异在激活导致小细胞成为终末体细胞和大细胞分化为生殖细胞的程序中具有因果重要性。许多基因座,包括至少五个mul(“多个类生殖细胞”)基因座,似乎负责确定不对称分裂将在何时何地发生,因为这些基因座的突变会导致生命周期中一个或多个部分的不对称分裂时间和/或空间模式发生改变。但完全进行不对称分裂的能力似乎需要由gls(无类生殖细胞)基因座编码的一种功能,因为gls突变体无法执行任何不对称分裂。已鉴定出的gls的第二位点抑制子可能编码不对称分裂所需的其他功能。正在对分裂胚胎进行细胞学和免疫细胞化学研究,以阐明在这种模式指定基因的影响下细胞分裂平面是如何建立和改变的。迄今为止的研究清楚地表明,基体装置,特别是其微管小根,在建立有丝分裂纺锤体和卵裂沟的方向中起核心作用;但仍有待确定在不对称分裂过程中分裂装置的行为是如何改变的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验