Scala A, Voigtmann Th, De Michele C
Dipartimento di Fisica, Universitá di Roma La Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy.
J Chem Phys. 2007 Apr 7;126(13):134109. doi: 10.1063/1.2719190.
Brownian dynamics algorithms integrate Langevin equations numerically and allow to probe long time scales in simulations. A common requirement for such algorithms is that interactions in the system should vary little during an integration time step; therefore, computational efficiency worsens as the interactions become steeper. In the extreme case of hard-body interactions, standard numerical integrators become ill defined. Several approximate schemes have been invented to handle such cases, but little emphasis has been placed on testing the correctness of the integration scheme. Starting from the two-body Smoluchowski equation, the authors discuss a general method for the overdamped Brownian dynamics of hard spheres, recently developed by one of the authors. They test the accuracy of the algorithm and demonstrate its convergence for a number of analytically tractable test cases.
布朗动力学算法通过数值方法对朗之万方程进行积分,从而能够在模拟中探究长时间尺度。此类算法的一个常见要求是,在一个积分时间步长内,系统中的相互作用变化应很小;因此,随着相互作用变得更陡峭,计算效率会变差。在硬体相互作用的极端情况下,标准数值积分器会变得定义不明确。已经发明了几种近似方案来处理这种情况,但在测试积分方案的正确性方面几乎没有给予重视。作者们从两体斯莫卢霍夫斯基方程出发,讨论了一种用于硬球过阻尼布朗动力学的通用方法,该方法是其中一位作者最近开发的。他们测试了算法的准确性,并在一些易于解析处理的测试案例中证明了其收敛性。