Reichert Julian, Granz Leon F, Voigtmann Thomas
Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170, Cologne, Germany.
Department of Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
Eur Phys J E Soft Matter. 2021 Mar 11;44(3):27. doi: 10.1140/epje/s10189-021-00039-4.
We discuss recent advances in developing a mode-coupling theory of the glass transition (MCT) of two-dimensional systems of active Brownian particles (ABPs). The theory describes the structural relaxation close to the active glass in terms of transient dynamical density correlation functions. We summarize the equations of motion that have been derived for the collective density-fluctuation dynamics and those for the tagged-particle motion. The latter allow to study the dynamics of both passive and active tracers in both passive and active host systems. In the limit of small wave numbers, they give rise to equations of motion describing the mean-squared displacements (MSDs) of these tracers and hence the long-time diffusion coefficients as a transport coefficient quantifying long-range tracer motion. We specifically discuss the case of a single ABP tracer in a glass-forming passive host suspension, a case that has recently been studied in experiments on colloidal Janus particles. We employ event-driven Brownian dynamics (ED-BD) computer simulations to test the ABP-MCT and find good agreement between the two for the MSD, provided that known errors in MCT already for the passive system (i.e., an overestimation of the glassiness of the system) are accounted for by an empirical mapping of packing fractions and host-system self-propulsion forces. The ED-BD simulation results also compare well to experimental data, although a peculiar non-monotonic mapping of self-propulsion velocities is required. The ABP-MCT predicts a specific self-propulsion dependence of the Stokes-Einstein relation between the long-time diffusion coefficient and the host-system viscosity that matches well the results from simulation. An application of ABP-MCT within the integration-through transients framework to calculate the density-renormalized effective swim velocity of the interacting ABP agrees qualitatively with the ED-BD simulation data at densities close to the glass transition and quantitatively for the full density range only after the mapping of packing fractions employed for the passive system.
我们讨论了在发展二维活性布朗粒子(ABP)系统的玻璃化转变的模式耦合理论(MCT)方面的最新进展。该理论根据瞬态动力学密度相关函数描述了接近活性玻璃态时的结构弛豫。我们总结了针对集体密度涨落动力学以及标记粒子运动所推导的运动方程。后者使得能够研究被动和主动宿主系统中被动和主动示踪剂的动力学。在小波数极限下,它们产生了描述这些示踪剂的均方位移(MSD)的运动方程,进而得到作为量化长程示踪剂运动的输运系数的长时间扩散系数。我们特别讨论了在形成玻璃的被动宿主悬浮液中单个ABP示踪剂的情况,这是最近在胶体Janus粒子实验中研究的一个案例。我们采用事件驱动布朗动力学(ED-BD)计算机模拟来测试ABP-MCT,并且发现只要通过堆积分数和宿主系统自推进力的经验映射来考虑被动系统中MCT已知的误差(即系统玻璃化程度的高估),两者在MSD方面就有很好的一致性。ED-BD模拟结果与实验数据也比较吻合,尽管需要一种特殊的自推进速度非单调映射。ABP-MCT预测了长时间扩散系数与宿主系统粘度之间的斯托克斯-爱因斯坦关系对自推进的特定依赖性,这与模拟结果非常匹配。在通过瞬态积分框架内应用ABP-MCT来计算相互作用ABP的密度重整化有效游动速度,在密度接近玻璃化转变时与ED-BD模拟数据定性一致,并且仅在对被动系统采用堆积分数映射后,在整个密度范围内才定量一致。