Uchiyama Takanori, Windhorst Uwe
Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
Biol Cybern. 2007 Jun;96(6):561-75. doi: 10.1007/s00422-007-0151-7. Epub 2007 Apr 13.
Spinal recurrent inhibition linking skeleto- motoneurons (alpha-MNs) via Renshaw cells (RCs) has been variously proposed to increase or decrease tendencies toward synchronous discharges between alpha-MNs. This controversy is not easy to settle experimentally in animal or human paradigms because RCs receive, in addition to excitatory input from alpha-MNs, many other modulating influences which may change their mode of operation. Computer simulations help to artificially isolate the recurrent inhibitory circuit and thus to study its effects on alpha-MN synchronization under conditions not achievable in natural experiments. We present here such a study which was designed to specifically test the following hypothesis. Since many alpha-MNs excite any particular Renshaw cell, which in turn inhibits many alpha-MNs, this convergence-divergence pattern establishes a random network whose random discharge patterns inject uncorrelated noise into alpha-MNs, and this noise counteracts any synchronization potentially arising from other sources, e.g., common inputs (Adam et al. in Biol Cybern 29:229-235, 1978). We investigated the short-term synchronization of alpha-MNs with two types of excitatory input signals to alpha-MNs (random and sinusoidally modulated random patterns). The main results showed that, while recurrent inhibitory inputs to different alpha-MNs were indeed different, recurrent inhibition (1) exerted rather small effects on the modulation of alpha-MN discharge, (2) tended to increase the short-term synchronization of alpha-MN discharge, and (3) did not generate secondary peaks in alpha-MN-alpha-MN cross-correlograms associated with alpha-MN rhythmicity.
通过闰绍细胞(RCs)连接骨骼肌运动神经元(α运动神经元,alpha-MNs)的脊髓回返抑制作用,对于其是增强还是减弱α运动神经元之间同步放电的趋势,存在多种不同观点。在动物或人体实验范式中,这一争议很难通过实验解决,因为闰绍细胞除了接受来自α运动神经元的兴奋性输入外,还受到许多其他调节性影响,这些影响可能会改变其运作模式。计算机模拟有助于人工分离回返抑制回路,从而在自然实验无法实现的条件下研究其对α运动神经元同步性的影响。我们在此展示这样一项研究,该研究旨在专门检验以下假设。由于许多α运动神经元会兴奋任何一个特定的闰绍细胞,而闰绍细胞又会抑制许多α运动神经元,这种聚合-发散模式建立了一个随机网络,其随机放电模式会向α运动神经元注入不相关的噪声,并且这种噪声会抵消可能由其他来源(例如共同输入)产生的任何同步性(亚当等人,《生物控制论》29:229 - 235,1978)。我们研究了α运动神经元与两种类型的α运动神经元兴奋性输入信号(随机和正弦调制随机模式)的短期同步性。主要结果表明,虽然不同α运动神经元的回返抑制性输入确实不同,但回返抑制(1)对α运动神经元放电的调制作用相当小,(2)倾向于增加α运动神经元放电的短期同步性,并且(3)在与α运动神经元节律相关的α运动神经元 - α运动神经元互相关图中不会产生二次峰值。