Rawls Matthew T, Kollmannsberger Georg, Elliott C Michael, Steiner Ulrich E
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
J Phys Chem A. 2007 May 10;111(18):3485-96. doi: 10.1021/jp070221s. Epub 2007 Apr 14.
Nanosecond time-resolved absorption studies in a magnetic field ranging from 0 to 2.0 T have been performed on a series of covalently linked donor(PXZ)-Ru(bipyridine)3-acceptor(diquat) complexes (D-C2+-A2+). In the PXZ moiety, the heteroatom (X = O (oxygen), T (sulfur), and S (selenium)) is systematically varied to study spin-orbit coupling effects. On the nanosecond time scale, the first detectable photoinduced electron-transfer product after exciting the chromophore C2+ is the charge-separated (CS) state, D+-C2+-A+, where an electron of the PXZ moiety, D, has been transferred to the diquat moiety, A2+. The magnetic-field-dependent kinetic behavior of charge recombination (monoexponential at 0 T progressing to biexponential for all three complexes with increasing field) can be quantitatively modeled by the radical pair relaxation mechanism assuming creation of the CS state with pure triplet spin correlation (3CS). Magnetic-field-independent contributions to the rate constant kr of T+/- --> (T0,S) relaxation are about 4.5 x 10(5) s-1 for DCA-POZ and -PTZ (due to a vibrational mechanism) and 3.5 x 10(6) s-1 for DCA-PSZ (due to spin rotational mechanism). Recombination to the singlet ground state is allowed only from the 1CS spin level; spin-forbidden recombination from 3CS seems negligible even for DCA-PSZ. The field dependence of kr (field-dependent recombination) can be decomposed into the contributions of various relaxation mechanisms. For all compounds, the electron spin dipolar coupling relaxation mechanism dominates the field dependence of tau(slow) at fields up to about 100 mT. Spin relaxation due to the g-tensor anisotropy relaxation mechanism accounts for the field dependence of tau(slow) for DCA-PSZ at high fields. For the underlying stochastic process, a very short correlation time of 2 ps has to be assumed, which is tentatively assigned to a flapping motion of the central, nonplanar ring in PSZ. Finally, it has been confirmed by paramagnetic quenching (here Heisenberg exchange) experiments of the magnetic-field effects with TEMPO that all magnetic-field dependencies observed with the present DCA-PSZ systems are indeed due to the magnetic-field dependence of spin relaxation.
在0至2.0 T的磁场范围内,对一系列共价连接的供体(PXZ)-钌(联吡啶)3-受体(二喹啉)配合物(D-C2+-A2+)进行了纳秒时间分辨吸收研究。在PXZ部分,杂原子(X = O(氧)、T(硫)和S(硒))系统地变化,以研究自旋-轨道耦合效应。在纳秒时间尺度上,激发发色团C2+后第一个可检测到的光诱导电子转移产物是电荷分离(CS)态,即D+-C2+-A+,其中PXZ部分(D)的一个电子已转移到二喹啉部分(A2+)。电荷复合的磁场依赖动力学行为(在0 T时为单指数,随着磁场增加,所有三种配合物都变为双指数)可以通过自由基对弛豫机制进行定量建模,假设CS态以纯三重态自旋相关性(3CS)产生。对于T+/- --> (T0,S)弛豫,磁场无关的速率常数kr贡献对于DCA-POZ和-PTZ约为4.5×10(5) s-1(由于振动机制),对于DCA-PSZ约为3.5×10(6) s-1(由于自旋旋转机制)。仅从1CS自旋能级允许向单重基态复合;即使对于DCA-PSZ,从3CS的自旋禁阻复合似乎也可以忽略不计。kr的磁场依赖性(场依赖复合)可以分解为各种弛豫机制的贡献。对于所有化合物,在高达约100 mT的磁场下,电子自旋偶极耦合弛豫机制主导了tau(slow)的磁场依赖性。由于g张量各向异性弛豫机制导致的自旋弛豫解释了DCA-PSZ在高磁场下tau(slow)的磁场依赖性。对于潜在的随机过程,必须假设一个非常短的2 ps相关时间,这暂时归因于PSZ中中心非平面环的摆动运动。最后,通过用TEMPO对磁场效应进行顺磁猝灭(这里是海森堡交换)实验证实,本DCA-PSZ系统中观察到的所有磁场依赖性确实是由于自旋弛豫的磁场依赖性。