Elbein A D
Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock 72205.
FASEB J. 1991 Dec;5(15):3055-63. doi: 10.1096/fasebj.5.15.1743438.
The biosynthesis of the various types of N-linked oligosaccharide structures involves two series of reactions: 1) the formation of the lipid-linked saccharide precursor, Glc3Man9(GlcNAc)2-pyrophosphoryl-dolichol, by the stepwise addition of GlcNAc, mannose and glucose to dolichyl-P, and 2) the removal of glucose and mannose by membrane-bound glycosidases and the addition of GlcNAc, galactose, sialic acid, and fucose by Golgi-localized glycosyltransferases to produce different complex oligosaccharide structures. For most glycoproteins, the precise role of the carbohydrate is still not known, but specific N-linked oligosaccharide structures are key players in targeting of lysosomal hydrolases to the lysosomes, in the clearance of asialoglycoproteins from the serum, and in some cases of cell:cell adhesion. Furthermore, many glycoproteins have more than one N-linked oligosaccharide, and these oligosaccharides on the same protein frequently have different structures. Thus, one oligosaccharide may be of the high-mannose type whereas another may be a complex chain. One approach to determining the role of specific structures in glycoprotein function is to use inhibitors that block the modification reactions at different steps, causing the cell to produce glycoproteins with altered carbohydrate structures. The function of these glycoproteins can then be assessed. A number of alkaloid-like compounds have been identified that are specific inhibitors of the glucosidases and mannosidases involved in glycoprotein processing. These compounds cause the formation of glycoproteins with glucose-containing high mannose structures, or various high-mannose or hybrid chains, depending on the site of inhibition. These inhibitors have also been useful for studying the processing pathway and for comparing processing enzymes from different organisms.
各种类型的N-连接寡糖结构的生物合成涉及两个系列的反应:1)通过将GlcNAc、甘露糖和葡萄糖逐步添加到二萜醇磷酸上,形成脂质连接的糖前体Glc3Man9(GlcNAc)2-焦磷酸化二萜醇;2)通过膜结合糖苷酶去除葡萄糖和甘露糖,并通过高尔基体定位的糖基转移酶添加GlcNAc、半乳糖、唾液酸和岩藻糖,以产生不同的复杂寡糖结构。对于大多数糖蛋白来说,碳水化合物的确切作用仍然未知,但特定的N-连接寡糖结构是将溶酶体水解酶靶向溶酶体、从血清中清除去唾液酸糖蛋白以及在某些细胞间黏附情况中的关键因素。此外,许多糖蛋白有不止一个N-连接寡糖,并且同一蛋白质上的这些寡糖通常具有不同的结构。因此,一个寡糖可能是高甘露糖型,而另一个可能是复杂链型。确定特定结构在糖蛋白功能中的作用的一种方法是使用抑制剂,这些抑制剂在不同步骤阻断修饰反应,使细胞产生具有改变的碳水化合物结构的糖蛋白。然后可以评估这些糖蛋白的功能。已经鉴定出许多类生物碱化合物,它们是参与糖蛋白加工的葡糖苷酶和甘露糖苷酶的特异性抑制剂。根据抑制位点的不同,这些化合物会导致形成含有葡萄糖的高甘露糖结构的糖蛋白,或各种高甘露糖或杂合链。这些抑制剂也有助于研究加工途径以及比较来自不同生物体的加工酶。