Peldschus K, Kaul M, Lange C, Nolte-Ernsting C, Adam G, Ittrich H
Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Hamburg-Eppendorf.
Rofo. 2007 May;179(5):473-9. doi: 10.1055/s-2006-927370.
PURPOSE: To assess the detectability of single magnetically labeled mesenchymal stem cells (MSC) in-vitro on a clinical 3T MR scanner using a small animal volume coil. MATERIALS AND METHODS: GFP-transfected MSC were magnetically labeled with superparamagnetic iron oxide particles (SPIO) while applying different dosages of iron (56 vs. 560 microg Fe/ml). The cellular iron content was determined with atomic absorption spectrometry (AAS). Single labeled MSC were displayed in a culture flask using MR imaging and microscopy. Special cell phantoms were designed to examine the detection of labeled MSC with MR imaging in a spatial model. A T2*-weighted 3D gradient echo sequence with isotropic spatial resolution of 150 to 500 microm (3) was used for image acquisition. The detection of labeled MSC in the cell phantoms was quantitatively evaluated using an automated image analysis. Statistical analysis was performed with a significance level of p < 0.05. RESULTS: The labeling of MSC yielded a mean cellular iron content of 1.5 +/- 0.17 pg Fe/cell (56 microg Fe/ml) and 8.3 +/- 1.85 pg Fe/cell (560 microg Fe/ml). Examination of the culture flasks showed single magnetically labeled MSC centered in much larger MR signal voids. The detection and quantification of single MSC in cell phantoms were feasible for spatial resolutions of 150 microm and 200 microm. Cells with a lower SPIO content (1.5 +/- 0.17 pg Fe/cell) were detected in 14.2 +/- 4.2 % (150 microm) and 7.7 +/- 3.8 % (200 microm). MSC with a higher cellular SPIO content (8.3 +/- 1.85 pg Fe/cell) revealed significantly higher occurrences at both spatial resolutions with 81.4 +/- 5.8 % (150 microm) and 59.9 +/- 12.4 % (200 microm), respectively. Regarding the spatial resolution (150 vs. 200 microm), significantly different detection rates were determined only for MSC with the higher SPIO content (8.3 +/- 1.85 pg Fe/cell). CONCLUSION: Detection of single magnetically labeled MSC is feasible on a clinical 3T MR scanner with a small animal volume coil at isotropic spatial resolutions of 150 microm and 200 microm. The number of detected cells is influenced by the cellular iron content and the spatial resolution.
目的:使用小动物容积线圈,在临床3T MR扫描仪上评估体外单个磁性标记间充质干细胞(MSC)的可检测性。 材料与方法:将绿色荧光蛋白(GFP)转染的MSC用超顺磁性氧化铁颗粒(SPIO)进行磁性标记,同时施加不同剂量的铁(56 vs. 560μg Fe/ml)。用原子吸收光谱法(AAS)测定细胞铁含量。使用MR成像和显微镜在培养瓶中显示单个标记的MSC。设计特殊的细胞模型,以在空间模型中用MR成像检查标记MSC的检测情况。使用各向同性空间分辨率为150至500μm(3)的T2 *加权3D梯度回波序列进行图像采集。使用自动图像分析对细胞模型中标记MSC的检测进行定量评估。进行统计学分析,显著性水平为p <0.05。 结果:MSC标记产生的平均细胞铁含量为1.5±0.17 pg Fe/细胞(56μg Fe/ml)和8.3±1.85 pg Fe/细胞(560μg Fe/ml)。培养瓶检查显示单个磁性标记的MSC集中在大得多的MR信号空洞中。对于150μm和200μm的空间分辨率,细胞模型中单个MSC的检测和定量是可行的。铁含量较低(1.5±0.17 pg Fe/细胞)的细胞在14.2±4.2%(150μm)和7.7±3.8%(200μm)被检测到。细胞铁含量较高(8.3±1.85 pg Fe/细胞)的MSC在两种空间分辨率下的出现率均显著更高,分别为81.4±5.8%(150μm)和59.9±12.4%(200μm)。关于空间分辨率(150 vs. 200μm),仅对于铁含量较高(8.3±1.85 pg Fe/细胞)的MSC确定了显著不同的检测率。 结论:在临床3T MR扫描仪上,使用小动物容积线圈,在150μm和200μm的各向同性空间分辨率下检测单个磁性标记的MSC是可行的。检测到的细胞数量受细胞铁含量和空间分辨率的影响。
Contrast Media Mol Imaging. 2010-8-5
Sichuan Da Xue Xue Bao Yi Xue Ban. 2012-7
Magn Reson Imaging. 2006-6
Neural Regen Res. 2015-3
Neural Regen Res. 2013-12-25