Shivachar Amruthesh C
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.
Biochem Pharmacol. 2007 Jun 15;73(12):2004-11. doi: 10.1016/j.bcp.2007.03.018. Epub 2007 Mar 24.
Cannabinoids have been shown to increase the extracellular levels of glutamate in vivo and in vitro, but no studies have evaluated the possible involvement of glial glutamate reuptake system. The present study investigates whether cannabinoids and endocannabinoid, anandamide have an effect on astroglial excitatory amino acid (EAA) transport. The kinetics of glutamate transport was studied in rat cortical astrocytes, using the radiolabeled, non-metabolized amino acid, D-[3H] aspartate in the absence or presence of cannabinoid receptor agonists. The results show that in vehicle controls the uptake of d-aspartate was rapid, sodium-dependent and saturated within the first 5 min, resulting in a K(m) 7.365+/-1.16 micromol/L (n=5) and the maximum velocity (V(max)) 1207+/-51 nmol/mg protein/min. Addition of the synthetic cannabinoid analog R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolol][1,2,3de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone (WIN 55,212-2; 3 micromol/L) increased the K(m) (26.25+/-4.84 micromol/L) without affecting the V(max) (1122+/-77 nmol/mg protein/min), suggesting the inhibition was competitive and reversible. Various other cannabinoid agonists also inhibited D-aspartate uptake in a dose-dependent and stereospecific manner. The cannabinoid inhibition of EAA transport was partially blocked by the cannabinoid type-1 (CB1) receptor antagonist N-(piperidin-1-yl-5(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride (SR141716A; 100 nmol/L). The inhibitory effects of WIN 55,212-2, or its endogenous counterpart anandamide were reversed by 98,059, an inhibitor of mitogen-activated kinase (MAPK) kinase (MEK). These results suggest that cannabinoids and endocannabinoids may constitute a novel class of inhibitors of astroglial glutamate transport system.
大麻素已被证明在体内和体外均可提高谷氨酸的细胞外水平,但尚无研究评估胶质细胞谷氨酸再摄取系统可能发挥的作用。本研究调查大麻素和内源性大麻素——花生四烯酸乙醇胺是否对星形胶质细胞兴奋性氨基酸(EAA)转运有影响。在大鼠皮质星形胶质细胞中,使用放射性标记的、非代谢性氨基酸D-[3H]天冬氨酸,在不存在或存在大麻素受体激动剂的情况下,研究谷氨酸转运的动力学。结果显示,在溶剂对照中,d-天冬氨酸的摄取迅速,依赖于钠,且在最初5分钟内达到饱和,得出米氏常数(K(m))为7.365±1.16微摩尔/升(n = 5),最大速度(V(max))为1207±51纳摩尔/毫克蛋白/分钟。添加合成大麻素类似物R(+)-[2,3-二氢-5-甲基-3-[(吗啉基)甲基]吡咯并][1,2,3-去]-1,4-苯并恶嗪基]-(1-萘基)甲酮(WIN 55,212-2;3微摩尔/升)可提高K(m)(26.25±4.84微摩尔/升),而不影响V(max)(1122±77纳摩尔/毫克蛋白/分钟),这表明该抑制作用具有竞争性且可逆。其他多种大麻素激动剂也以剂量依赖性和立体特异性方式抑制D-天冬氨酸的摄取。大麻素对EAA转运的抑制作用被大麻素1型(CB1)受体拮抗剂N-(哌啶-1-基-5-(4-氯苯基)-1-(2,4-二氯苯基)-4-甲基-1H-吡唑-3-甲酰胺盐酸盐(SR141716A;100纳摩尔/升)部分阻断。WIN 55,212-2或其内源性对应物花生四烯酸乙醇胺的抑制作用可被丝裂原活化蛋白激酶(MAPK)激酶(MEK)抑制剂98,059逆转。这些结果表明,大麻素和内源性大麻素可能构成一类新型的星形胶质细胞谷氨酸转运系统抑制剂。