Suppr超能文献

带有暴露生物标志物和灵活测量误差的逻辑回归

Logistic regression with exposure biomarkers and flexible measurement error.

作者信息

Sugar Elizabeth A, Wang Ching-Yun, Prentice Ross L

机构信息

Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21205, USA.

出版信息

Biometrics. 2007 Mar;63(1):143-51. doi: 10.1111/j.1541-0420.2006.00632.x.

Abstract

Regression calibration, refined regression calibration, and conditional scores estimation procedures are extended to a measurement model that is motivated by nutritional and physical activity epidemiology. Biomarker data, available on a small subset of a study cohort for reasons of cost, are assumed to adhere to a classical measurement error model, while corresponding self-report nutrient consumption or activity-related energy expenditure data are available for the entire cohort. The self-report assessment measurement model includes a person-specific random effect, the mean and variance of which may depend on individual characteristics such as body mass index or ethnicity. Logistic regression is used to relate the disease odds ratio to the actual, but unmeasured, dietary or physical activity exposure. Simulation studies are presented to evaluate and contrast the three estimation procedures, and to provide insight into preferred biomarker subsample size under selected cohort study configurations.

摘要

回归校准、改进的回归校准和条件分数估计程序被扩展到一个由营养和身体活动流行病学驱动的测量模型。由于成本原因,仅在研究队列的一小部分子集上可获得的生物标志物数据,被假定遵循经典测量误差模型,而相应的自我报告营养摄入量或与活动相关的能量消耗数据则可用于整个队列。自我报告评估测量模型包括个体特定的随机效应,其均值和方差可能取决于个体特征,如体重指数或种族。逻辑回归用于将疾病优势比与实际但未测量的饮食或身体活动暴露联系起来。本文进行了模拟研究,以评估和对比这三种估计程序,并深入了解在选定的队列研究配置下首选的生物标志物子样本大小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验