Walsh Bruce, Redd Alan J, Hammer Michael F
Department of Ecology and Evolutionary Biology, University of Arizona Tucson, AZ 85721, USA.
Forensic Sci Int. 2008 Jan 30;174(2-3):234-8. doi: 10.1016/j.forsciint.2007.03.014. Epub 2007 Apr 20.
Empirical tests of association between Y chromosome and autosomal markers are presented and a theoretical framework for determining a joint match probability is recommended. Statistical analyses of association were performed in 16 US populations between the autosomal genotypes from loci CSF1PO, FGA, THO1, TPOX, vWA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S512, D21S11 and Y chromosome haplotypes from loci DYS19, DYS385ab, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS438, and DYS439. The sample populations include individuals of European-, African-, Hispanic-, Native-, and Asian-American ancestry. The results are consistent with independence of Y and autosomal markers, although small amounts of dependence would likely have escaped our tests. Given the data in hand, we suggest it is appropriate to compute joint match probabilities by multiplying the Y haplotype frequency with the appropriately corrected autosomal frequency. In addition to correcting for autosomal frequency differences between groups, a further correction may be required. Since two individuals sharing the same Y haplotype are likely to be more recently related than two randomly chosen individuals, the autosomal frequencies have to be adjusted to account for this, akin to the theta correction used to account for population substructure. The structure imposed on the autosomal frequencies conditioned in a Y match is a function of the number of markers scored and their mutation rate. However, in most settings theta<0.01. When population structure is already present in the autosomes, the additional effect due to conditioning on the Y is small. For example, if the amount of structure in the population is theta=0.01 or 0.03 (the NRCII range), then the effect of conditioning on the Y results in only a trivial increase in theta to 0.02-0.04, respectively.
本文展示了Y染色体与常染色体标记之间关联的实证检验,并推荐了一种用于确定联合匹配概率的理论框架。我们对16个美国人群中来自CSF1PO、FGA、THO1、TPOX、vWA、D3S1358、D5S818、D7S820、D8S1179、D13S317、D16S539、D18S512、D21S11等位点的常染色体基因型,以及来自DYS19、DYS385ab、DYS389I、DYS389II、DYS390、DYS391、DYS392、DYS393、DYS438和DYS439等位点的Y染色体单倍型进行了关联的统计分析。样本人群包括欧洲裔、非洲裔、西班牙裔、原住民和亚裔美国人。结果与Y染色体和常染色体标记的独立性一致,尽管少量的依赖性可能会逃过我们的检验。基于手头的数据,我们建议通过将Y单倍型频率与经过适当校正的常染色体频率相乘来计算联合匹配概率。除了校正不同群体之间的常染色体频率差异外,可能还需要进一步校正。由于共享相同Y单倍型的两个个体可能比两个随机选择的个体关系更近,因此常染色体频率必须进行调整以考虑到这一点,这类似于用于考虑群体亚结构的θ校正。在Y匹配条件下施加于常染色体频率的结构是所计分标记数量及其突变率的函数。然而,在大多数情况下,θ<0.01。当群体结构已经存在于常染色体中时,基于Y的条件作用产生的额外影响很小。例如,如果群体中的结构量为θ = 0.01或0.03(NRCII范围),那么基于Y的条件作用的影响只会使θ分别轻微增加到0.02 - 0.04。