Suppr超能文献

斯洛文尼亚二战 Konfin I 万人冢骨骼遗骸的分子遗传学鉴定。

Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia.

机构信息

Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia.

出版信息

Int J Legal Med. 2010 Jul;124(4):307-17. doi: 10.1007/s00414-010-0431-y. Epub 2010 Mar 10.

Abstract

This paper describes molecular genetic identification of one third of the skeletal remains of 88 victims of postwar (June 1945) killings found in the Konfin I mass grave in Slovenia. Living relatives were traced for 36 victims. We analyzed 84 right femurs and compared their genetic profiles to the genetic material of living relatives. We cleaned the bones, removed surface contamination, and ground the bones into powder. Prior to DNA isolation using Biorobot EZ1 (Qiagen), the powder was decalcified. The nuclear DNA of the samples was quantified using the real-time polymerase chain reaction method. We extracted 0.8 to 100 ng DNA/g of bone powder from 82 bones. Autosomal genetic profiles and Y-chromosome haplotypes were obtained from 98% of the bones, and mitochondrial DNA (mtDNA) haplotypes from 95% of the bones for the HVI region and from 98% of the bones for the HVII region. Genetic profiles of the nuclear and mtDNA were determined for reference persons. For traceability in the event of contamination, we created an elimination database including genetic profiles of the nuclear and mtDNA of all persons that had been in contact with the skeletal remains. When comparing genetic profiles, we matched 28 of the 84 bones analyzed with living relatives (brothers, sisters, sons, daughters, nephews, or cousins). The statistical analyses showed a high confidence of correct identification for all 28 victims in the Konfin I mass grave (posterior probability ranged from 99.9% to more than 99.999999%).

摘要

本文描述了对在斯洛文尼亚科芬一世万人坑中发现的 88 名战后(1945 年 6 月)杀戮遇难者的三分之一骨骼遗骸进行分子遗传学鉴定的过程。对 36 名遇难者的在世亲属进行了追踪。我们分析了 84 根右侧股骨,并将其遗传特征与在世亲属的遗传物质进行了比较。我们对骨骼进行了清洁,去除了表面污染物,并将骨骼研磨成粉末。在使用 Biorobot EZ1(Qiagen)进行 DNA 分离之前,对粉末进行了脱钙处理。使用实时聚合酶链反应方法对样品中的核 DNA 进行了定量。我们从 82 根骨头中提取了 0.8 到 100ng/g 的骨粉 DNA。从 98%的骨骼中获得了常染色体遗传特征和 Y 染色体单倍型,从 95%的骨骼中获得了 HVII 区的线粒体 DNA(mtDNA)单倍型,从 98%的骨骼中获得了 HVII 区的 mtDNA 单倍型。为参考人员确定了核 DNA 和 mtDNA 的遗传特征。为了在发生污染的情况下进行追踪,我们创建了一个消除数据库,其中包括与骨骼遗骸接触过的所有人的核 DNA 和 mtDNA 遗传特征。在进行遗传特征比较时,我们将分析的 84 根骨骼中的 28 根与在世亲属(兄弟、姐妹、儿子、女儿、侄子或表亲)进行了匹配。统计分析显示,科芬一世万人坑中所有 28 名遇难者的身份识别可信度极高(后验概率范围从 99.9%到 99.999999%以上)。

相似文献

1
Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia.
Int J Legal Med. 2010 Jul;124(4):307-17. doi: 10.1007/s00414-010-0431-y. Epub 2010 Mar 10.
2
Identifying victims of the largest Second World War family massacre in Slovenia.
Forensic Sci Int. 2020 Jan;306:110056. doi: 10.1016/j.forsciint.2019.110056. Epub 2019 Nov 15.
4
DNA typing for the identification of old skeletal remains from Korean War victims.
J Forensic Sci. 2010 Nov;55(6):1422-9. doi: 10.1111/j.1556-4029.2010.01411.x.
5
Prediction of autosomal STR typing success in ancient and Second World War bone samples.
Forensic Sci Int Genet. 2017 Mar;27:17-26. doi: 10.1016/j.fsigen.2016.11.004. Epub 2016 Nov 19.
6
Searching for the mother missed since the Second World War.
J Forensic Leg Med. 2016 Nov;44:138-142. doi: 10.1016/j.jflm.2016.10.015. Epub 2016 Oct 24.
8
Forensic DNA challenges: replacing numbers with names of Fosse Ardeatine's victims.
J Forensic Sci. 2009 Jul;54(4):905-8. doi: 10.1111/j.1556-4029.2009.01052.x. Epub 2009 Apr 17.
9
Application of low copy number STR typing to the identification of aged, degraded skeletal remains.
J Forensic Sci. 2007 Nov;52(6):1322-7. doi: 10.1111/j.1556-4029.2007.00561.x. Epub 2007 Oct 17.
10
Identification process in mass graves from the Spanish Civil War I.
Forensic Sci Int. 2010 Jun 15;199(1-3):e27-36. doi: 10.1016/j.forsciint.2010.02.023.

引用本文的文献

2
Bone Type Selection for Human Molecular Genetic Identification of Skeletal Remains.
Genes (Basel). 2025 Jul 24;16(8):872. doi: 10.3390/genes16080872.
6
Y-STR analysis of highly degraded DNA from skeletal remains over 70 years old.
Forensic Sci Res. 2024 Apr 12;9(2):owae020. doi: 10.1093/fsr/owae020. eCollection 2024 Jun.
7
Genetic sexing of subadult skeletal remains.
Sci Rep. 2023 Nov 22;13(1):20463. doi: 10.1038/s41598-023-47836-9.
9
Measure quantity of mitochondrial DNA in aged bones or calculate it from nuclear DNA quantitative PCR results?
Int J Legal Med. 2023 Nov;137(6):1653-1659. doi: 10.1007/s00414-023-03074-2. Epub 2023 Aug 10.
10
Improving kinship probability in analysis of ancient skeletons using identity SNPs and MPS technology.
Int J Legal Med. 2023 Jul;137(4):1007-1015. doi: 10.1007/s00414-023-03003-3. Epub 2023 May 2.

本文引用的文献

3
Validity of low copy number typing and applications to forensic science.
Croat Med J. 2009 Jun;50(3):207-17. doi: 10.3325/cmj.2009.50.207.
4
Fishing for ancient DNA.
Forensic Sci Int Genet. 2008 Mar;2(2):104-7. doi: 10.1016/j.fsigen.2007.09.004. Epub 2007 Nov 19.
5
EMPOP--a forensic mtDNA database.
Forensic Sci Int Genet. 2007 Jun;1(2):88-92. doi: 10.1016/j.fsigen.2007.01.018. Epub 2007 Mar 7.
6
Y chromosome haplotype reference database (YHRD): update.
Forensic Sci Int Genet. 2007 Jun;1(2):83-7. doi: 10.1016/j.fsigen.2007.01.017. Epub 2007 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验