Kweon Ohgew, Kim Seong-Jae, Jones Richard C, Freeman James P, Adjei Michael D, Edmondson Ricky D, Cerniglia Carl E
Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
J Bacteriol. 2007 Jul;189(13):4635-47. doi: 10.1128/JB.00128-07. Epub 2007 Apr 20.
Mycobacterium vanbaalenii PYR-1 is capable of degrading a wide range of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), including fluoranthene. We used a combination of metabolomic, genomic, and proteomic technologies to investigate fluoranthene degradation in this strain. Thirty-seven fluoranthene metabolites including potential isomers were isolated from the culture medium and analyzed by high-performance liquid chromatography, gas chromatography-mass spectrometry, and UV-visible absorption. Total proteins were separated by one-dimensional gel and analyzed by liquid chromatography-tandem mass spectrometry in conjunction with the M. vanbaalenii PYR-1 genome sequence (http://jgi.doe.gov), which resulted in the identification of 1,122 proteins. Among them, 53 enzymes were determined to be likely involved in fluoranthene degradation. We integrated the metabolic information with the genomic and proteomic results and proposed pathways for the degradation of fluoranthene. According to our hypothesis, the oxidation of fluoranthene is initiated by dioxygenation at the C-1,2, C-2,3, and C-7,8 positions. The C-1,2 and C-2,3 dioxygenation routes degrade fluoranthene via fluorene-type metabolites, whereas the C-7,8 routes oxidize fluoranthene via acenaphthylene-type metabolites. The major site of dioxygenation is the C-2,3 dioxygenation route, which consists of 18 enzymatic steps via 9-fluorenone-1-carboxylic acid and phthalate with the initial ring-hydroxylating oxygenase, NidA3B3, oxidizing fluoranthene to fluoranthene cis-2,3-dihydrodiol. Nonspecific monooxygenation of fluoranthene with subsequent O methylation of dihydroxyfluoranthene also occurs as a detoxification reaction.
范氏分支杆菌PYR-1能够降解多种高分子量多环芳烃(PAHs),包括荧蒽。我们结合代谢组学、基因组学和蛋白质组学技术来研究该菌株中荧蒽的降解情况。从培养基中分离出37种荧蒽代谢物(包括潜在异构体),并通过高效液相色谱、气相色谱-质谱联用以及紫外-可见吸收光谱进行分析。总蛋白通过一维凝胶电泳分离,并结合范氏分支杆菌PYR-1基因组序列(http://jgi.doe.gov)通过液相色谱-串联质谱进行分析,结果鉴定出1122种蛋白质。其中,确定有53种酶可能参与荧蒽的降解。我们将代谢信息与基因组学和蛋白质组学结果整合在一起,提出了荧蒽的降解途径。根据我们的假设,荧蒽的氧化是通过在C-1,2、C-2,3和C-7,8位的双加氧作用启动的。C-1,2和C-2,3双加氧途径通过芴型代谢物降解荧蒽,而C-7,8途径则通过苊烯型代谢物氧化荧蒽。双加氧的主要位点是C-2,3双加氧途径,该途径由18个酶促步骤组成,通过9-芴酮-1-羧酸和邻苯二甲酸,最初的环羟基化加氧酶NidA3B3将荧蒽氧化为荧蒽顺式-2,3-二氢二醇。荧蒽的非特异性单加氧作用以及随后二羟基荧蒽的O-甲基化也作为解毒反应发生。