Suppr超能文献

完整单克隆抗体的相行为。

Phase behavior of an intact monoclonal antibody.

作者信息

Ahamed Tangir, Esteban Beatriz N A, Ottens Marcel, van Dedem Gijs W K, van der Wielen Luuk A M, Bisschops Marc A T, Lee Albert, Pham Christine, Thömmes Jörg

机构信息

Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.

出版信息

Biophys J. 2007 Jul 15;93(2):610-9. doi: 10.1529/biophysj.106.098293. Epub 2007 Apr 20.

Abstract

Understanding protein phase behavior is important for purification, storage, and stable formulation of protein drugs in the biopharmaceutical industry. Glycoproteins, such as monoclonal antibodies (MAbs) are the most abundant biopharmaceuticals and probably the most difficult to crystallize among water-soluble proteins. This study explores the possibility of correlating osmotic second virial coefficient (B(22)) with the phase behavior of an intact MAb, which has so far proved impossible to crystallize. The phase diagram of the MAb is presented as a function of the concentration of different classes of precipitants, i.e., NaCl, (NH4)2SO4, and polyethylene glycol. All these precipitants show a similar behavior of decreasing solubility with increasing precipitant concentration. B(22) values were also measured as a function of the concentration of the different precipitants by self-interaction chromatography and correlated with the phase diagrams. Correlating phase diagrams with B(22) data provides useful information not only for a fundamental understanding of the phase behavior of MAbs, but also for understanding the reason why certain proteins are extremely difficult to crystallize. The scaling of the phase diagram in B(22) units also supports the existence of a universal phase diagram of a complex glycoprotein when it is recast in a protein interaction parameter.

摘要

了解蛋白质的相行为对于生物制药行业中蛋白质药物的纯化、储存和稳定制剂至关重要。糖蛋白,如单克隆抗体(MAb)是最丰富的生物药物,可能也是水溶性蛋白质中最难结晶的。本研究探讨了将渗透压第二维里系数(B(22))与完整单克隆抗体的相行为相关联的可能性,该单克隆抗体迄今为止已证明无法结晶。单克隆抗体的相图表示为不同种类沉淀剂(即氯化钠、硫酸铵和聚乙二醇)浓度的函数。所有这些沉淀剂都表现出随着沉淀剂浓度增加溶解度降低的相似行为。还通过自相互作用色谱法测量了B(22)值作为不同沉淀剂浓度的函数,并将其与相图相关联。将相图与B(22)数据相关联不仅为从根本上理解单克隆抗体的相行为提供了有用信息,也有助于理解某些蛋白质极难结晶的原因。以B(22)单位对相图进行标度也支持了在将复杂糖蛋白重铸为蛋白质相互作用参数时存在通用相图的观点。

相似文献

1
Phase behavior of an intact monoclonal antibody.
Biophys J. 2007 Jul 15;93(2):610-9. doi: 10.1529/biophysj.106.098293. Epub 2007 Apr 20.
2
From osmotic second virial coefficient (B22 ) to phase behavior of a monoclonal antibody.
Biotechnol Prog. 2015 Mar-Apr;31(2):438-51. doi: 10.1002/btpr.2065. Epub 2015 Mar 7.
3
Influence of macromolecular precipitants on phase behavior of monoclonal antibodies.
Biotechnol Prog. 2015 Jan-Feb;31(1):145-53. doi: 10.1002/btpr.2027. Epub 2015 Jan 9.
4
Metastability Gap in the Phase Diagram of Monoclonal IgG Antibody.
Biophys J. 2017 Oct 17;113(8):1750-1756. doi: 10.1016/j.bpj.2017.08.048.
5
Interactions and phase behavior of a monoclonal antibody.
Biotechnol Prog. 2011 Jan-Feb;27(1):280-9. doi: 10.1002/btpr.536. Epub 2011 Jan 6.
6
A comparative study of monoclonal antibodies. 1. Phase behavior and protein-protein interactions.
Biotechnol Prog. 2015 Jan-Feb;31(1):268-76. doi: 10.1002/btpr.2011. Epub 2014 Nov 19.
7
Determination of protein phase diagrams by microbatch experiments: exploring the influence of precipitants and pH.
Int J Pharm. 2015 Feb 1;479(1):28-40. doi: 10.1016/j.ijpharm.2014.12.027. Epub 2014 Dec 23.
8
Preferential precipitation of acidic variants from monoclonal antibody pools.
Biotechnol Bioeng. 2023 Jan;120(1):114-124. doi: 10.1002/bit.28257. Epub 2022 Oct 27.

引用本文的文献

1
The Relationship between Protein-Protein Interactions and Liquid-Liquid Phase Separation for Monoclonal Antibodies.
Mol Pharm. 2023 May 1;20(5):2662-2674. doi: 10.1021/acs.molpharmaceut.3c00090. Epub 2023 Apr 11.
3
A stepwise mechanism for aqueous two-phase system formation in concentrated antibody solutions.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15784-15791. doi: 10.1073/pnas.1900886116. Epub 2019 Jul 23.
5
Development of a high-throughput solubility screening assay for use in antibody discovery.
MAbs. 2019 May/Jun;11(4):747-756. doi: 10.1080/19420862.2019.1589851. Epub 2019 Mar 26.
7
Modeling the depletion effect caused by an addition of polymer to monoclonal antibody solutions.
J Phys Condens Matter. 2018 Dec 5;30(48):485101. doi: 10.1088/1361-648X/aae914. Epub 2018 Nov 12.
8
AUC measurements of diffusion coefficients of monoclonal antibodies in the presence of human serum proteins.
Eur Biophys J. 2018 Oct;47(7):709-722. doi: 10.1007/s00249-018-1319-x. Epub 2018 Jul 12.
9
Metastability Gap in the Phase Diagram of Monoclonal IgG Antibody.
Biophys J. 2017 Oct 17;113(8):1750-1756. doi: 10.1016/j.bpj.2017.08.048.

本文引用的文献

1
[6] Second virial coefficient as predictor in protein crystal growth.
Methods Enzymol. 1997;276:100-110. doi: 10.1016/S0076-6879(97)76052-X.
2
Protein salting-out: phase equilibria in two-protein systems.
Biotechnol Bioeng. 1997 Mar 20;53(6):567-74. doi: 10.1002/(SICI)1097-0290(19970320)53:6<567::AID-BIT4>3.0.CO;2-K.
3
Some characteristics of protein precipitation by salts.
Biotechnol Bioeng. 1992 Dec 5;40(10):1155-64. doi: 10.1002/bit.260401004.
6
Second virial coefficient studies of cosolvent-induced protein self-interaction.
Biophys J. 2005 Dec;89(6):4211-8. doi: 10.1529/biophysj.105.068551. Epub 2005 Sep 30.
7
Design of self-interaction chromatography as an analytical tool for predicting protein phase behavior.
J Chromatogr A. 2005 Sep 30;1089(1-2):111-24. doi: 10.1016/j.chroma.2005.06.065.
8
The role of protein and surfactant interactions in membrane-protein crystallization.
Acta Crystallogr D Biol Crystallogr. 2005 Jun;61(Pt 6):724-30. doi: 10.1107/S0907444904029063. Epub 2005 May 26.
9
Methods for separating nucleation and growth in protein crystallisation.
Prog Biophys Mol Biol. 2005 Jul;88(3):329-37. doi: 10.1016/j.pbiomolbio.2004.07.007.
10
Protein crystallization and phase diagrams.
Methods. 2004 Nov;34(3):266-72. doi: 10.1016/j.ymeth.2004.03.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验